ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesovská filtrace stavových modelů s neznámými kovariancemi

Bayesian filtering of state-space models with unknown covariance matrices

Typ dokumentu
diplomová práce
master thesis
Autor
Tomáš Vlk
Vedoucí práce
Dedecius Kamil
Oponent práce
Tichý Ondřej
Studijní obor
Znalostní inženýrství
Studijní program
Informatika 2010
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato závěrečná práce se věnuje problému distribuovaného Baysovského sekvenčního odhadu neznámých stavů stavových modelů s neznámými kovariačními maticemi šumu procesu i měření. Tento problém je velmi častý v reálných případech, kde specifické informace o kovariačních maticích šumu pro jednotlivé senzory nemusí být dostupné. Řešení navržené v této práci je postavené na teorii variačního Bayese, ta je využitá jak k odhadu stavů, tak i k odhadu kovariační matice šumu měření. Z důvodu zlepšení sdílíme jak měření, tak i posteriorní odhady mezi sousedními uzly v síti. Práce zároveň ukazuje způsob optimalizace kovariační matice procesního šumu.
 
This thesis explores the problem of distributed Bayesian sequential estimation of unknown state-spacemodels with unknown processes and measurement noise covariance matrices. This is a frequent problem in real-world scenarios, where the information about noise covariance matrices for specific sensors may not be available. The solution proposed in this thesis is built upon the variational Bayesian paradigm, which is used for the estimation of the states, as well as the unknown measurement noise covariance matrix. From performance improvements, the measurements and posterior estimates are shared between the adjacent node in the network. It also shows a way of optimizing the process noise covariance matrix.
 
URI
http://hdl.handle.net/10467/94606
Zobrazit/otevřít
PLNY_TEXT (2.666Mb)
PRILOHA (7.747Mb)
POSUDEK (44.09Kb)
POSUDEK (44.80Kb)
Kolekce
  • Diplomové práce - 18105 [235]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV