Show simple item record

Premature Convergence Problem of Gaussian EDA



dc.contributor.advisorPošík Petr
dc.contributor.authorVojtěch Tollar
dc.date.accessioned2020-09-04T13:52:27Z
dc.date.available2020-09-04T13:52:27Z
dc.date.issued2020-08-27
dc.identifierKOS-857605034405
dc.identifier.urihttp://hdl.handle.net/10467/89984
dc.description.abstractGaussovský estimation-of-distribution algoritmus (Gaussovský EDA) je populační optimalizační algoritmus, který pro generování nové populace používá odhadnuté normální rozdělení. Trpí však problémem předčasné konvergence, kdy příliš rychle klesá diverzita populace. V této práci jsem prezentoval možné metody řešení tohoto problému. Metody byly testovány na lineární a elipsoidní účelové funkci, čímž bylo zjištěno, které metody problém předčasné konvergence skutečně řeší. Následně jsem porovnal účinnost metod k řešení účelových funkcí pomocí nástroje ,,Comparing Continuous Optimizers`` (COCO). Také byly vyzkoušeny i slibné kombinace metod. Bylo objeveno, že některé z těchto kombinací dokáží na vybraných příkladech konkurovat i v praxi úspěšnému algoritmu CMA-ES.cze
dc.description.abstractGaussian estimation-of-distribution algorithm (Gaussian EDA) is a population-based optimalization algorithm, which uses estimated normal distribution for sampling a new population. However, it suffers from the premature convergence problem, which means a too rapid decline in population diversity. In this thesis, I have presented possible solutions to this problem. These methods were tested on a linear and an ellipsoid objective function, discovering which methods truly solve the problem. Subsequently, I have compared the efficiency of the methonds in solving objective functions with a benchmarking tool "Comparing Continuous Optimizers" (COCO). Also tested were promising combinations of methods. It was discovered, that some of these combinations were in selected cases able to compete with CMA-ES, a successful algorithm in practice.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectGaussovské EDAcze
dc.subjectestimation of distributioncze
dc.subjectpředčasná konvergencecze
dc.subjectevoluční algoritmycze
dc.subjectevoluční strategiecze
dc.subjectGaussian EDAeng
dc.subjectestimation of distributioneng
dc.subjectpremature convergenceeng
dc.subjectevolutionary algorithmseng
dc.subjectevolution strategieseng
dc.titleProblém předčasné konvergence u Gaussovského EDAcze
dc.titlePremature Convergence Problem of Gaussian EDAeng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeKubalík Jiří
theses.degree.disciplineInformatika a počítačové vědycze
theses.degree.grantorkatedra kybernetikycze
theses.degree.programmeOtevřená informatikacze


Files in this item





This item appears in the following Collection(s)

Show simple item record