Problém předčasné konvergence u Gaussovského EDA
Premature Convergence Problem of Gaussian EDA
Type of document
bakalářská prácebachelor thesis
Author
Vojtěch Tollar
Supervisor
Pošík Petr
Opponent
Kubalík Jiří
Field of study
Informatika a počítačové vědyStudy program
Otevřená informatikaInstitutions assigning rank
katedra kybernetikyRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
Gaussovský estimation-of-distribution algoritmus (Gaussovský EDA) je populační optimalizační algoritmus, který pro generování nové populace používá odhadnuté normální rozdělení. Trpí však problémem předčasné konvergence, kdy příliš rychle klesá diverzita populace. V této práci jsem prezentoval možné metody řešení tohoto problému. Metody byly testovány na lineární a elipsoidní účelové funkci, čímž bylo zjištěno, které metody problém předčasné konvergence skutečně řeší. Následně jsem porovnal účinnost metod k řešení účelových funkcí pomocí nástroje ,,Comparing Continuous Optimizers`` (COCO). Také byly vyzkoušeny i slibné kombinace metod. Bylo objeveno, že některé z těchto kombinací dokáží na vybraných příkladech konkurovat i v praxi úspěšnému algoritmu CMA-ES. Gaussian estimation-of-distribution algorithm (Gaussian EDA) is a population-based optimalization algorithm, which uses estimated normal distribution for sampling a new population. However, it suffers from the premature convergence problem, which means a too rapid decline in population diversity. In this thesis, I have presented possible solutions to this problem. These methods were tested on a linear and an ellipsoid objective function, discovering which methods truly solve the problem. Subsequently, I have compared the efficiency of the methonds in solving objective functions with a benchmarking tool "Comparing Continuous Optimizers" (COCO). Also tested were promising combinations of methods. It was discovered, that some of these combinations were in selected cases able to compete with CMA-ES, a successful algorithm in practice.
Collections
- Bakalářské práce - 13133 [787]