ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sekvenční bayesovská poissonovská regrese

Sequential Bayesian Poisson regression

Typ dokumentu
diplomová práce
master thesis
Autor
Radomír Žemlička
Vedoucí práce
Dedecius Kamil
Oponent práce
Sečkárová Vladimíra
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Poissonovská regrese je populární zobecněný lineární model používaný k modelování diskrétních náhodných veličin, typicky počtů. Tato práce je zaměřena na problematiku jejího sekvenčního odhadování s regresními koeficienty potenciálně pomalu proměnnými v čase. Je použita vhodná aproximace normálním rozdělením, aby tak bylo možné učinit v Bayesovském kontextu. Rovněž je diskutována kalibrační technika pro zvýšení kvality odhadů. Na závěr je navržen případ použití představeného přístupu v doméně zpracování signálu, zejména jeho použití v difuzních sítích (diffusion networks) pro realizaci distribuovaného kolaborativního odhadování.
 
The Poisson regression is a popular generalized linear model used to model discrete count variables. This thesis is focused on the problem of its sequential estimation under potentially slowly time-varying regression coefficients. A convenient approximation by normal distribution is used to do so in the Bayesian setting. Also, a calibration technique is discussed to enhance the estimation quality. Finally, a use case of the proposed approach in the signal processing domain is suggested, in particular, its application in diffusion networks to perform distributed collaborative estimation.
 
URI
http://hdl.handle.net/10467/87972
Zobrazit/otevřít
PLNY_TEXT (1.412Mb)
POSUDEK (135.3Kb)
POSUDEK (137.7Kb)
Kolekce
  • Diplomové práce - 18105 [235]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV