Zobrazit minimální záznam

Predictive control of an unmanned aerial vehicle with a time-variable mass



dc.contributor.advisorSaska Martin
dc.contributor.authorSaikin Diego Alejandro
dc.date.accessioned2018-06-19T22:08:03Z
dc.date.available2018-06-19T22:08:03Z
dc.date.issued2018-06-19
dc.identifierKOS-880323798205
dc.identifier.urihttp://hdl.handle.net/10467/77231
dc.description.abstractThe ultimate purpose of this thesis is to bring closer to reality, the use of fully autonomous unmanned aerial vehicle to extinguish wildfires. In order to achieve that goal, the approach taken consists in designing a solution to an optimal control problem for which a UAV can deploy a payload (e.g. re retardant or water) above a wildre. This solution also avoids structural damage to the UAV (due to heat exposure), and minimize the re retardant dissipation. This is achieved by minimizing both and the releasing distance from the re and by maximizing the speed upon releasing the payload. In addition, the optimizer takes into account environmental parameters such as wind and terrain gradient. The novelty in this method is to deliberately cause the drone to fly outside of its safe flight envelope. This means, by tilting the UAV to high pitch angles, allowing it to engage in a sort of controlled free fall, while the thrust is pointed almost horizontally, and thus achieving higher horizontal speeds than it would normally be able to. By doing so, the high heat exposure time can be minimized and the payload can be dropped closer to the fire epicenter. The optimization process takes into account the expected change in mass (due to the payload release above the re), and allows it to engage in a risky maneuver, assuming that after dropping the payload, the vehicle will be lighter and thus able to recover without impacting on the terrain. The output of the optimizer consists of a full state trajectory for the whole planned maneuver. These outputs were tested with both simulators and real platforms.cze
dc.description.abstractThe ultimate purpose of this thesis is to bring closer to reality, the use of fully autonomous unmanned aerial vehicle to extinguish wildfires. In order to achieve that goal, the approach taken consists in designing a solution to an optimal control problem for which a UAV can deploy a payload (e.g. re retardant or water) above a wildre. This solution also avoids structural damage to the UAV (due to heat exposure), and minimize the re retardant dissipation. This is achieved by minimizing both and the releasing distance from the re and by maximizing the speed upon releasing the payload. In addition, the optimizer takes into account environmental parameters such as wind and terrain gradient. The novelty in this method is to deliberately cause the drone to fly outside of its safe flight envelope. This means, by tilting the UAV to high pitch angles, allowing it to engage in a sort of controlled free fall, while the thrust is pointed almost horizontally, and thus achieving higher horizontal speeds than it would normally be able to. By doing so, the high heat exposure time can be minimized and the payload can be dropped closer to the fire epicenter. The optimization process takes into account the expected change in mass (due to the payload release above the re), and allows it to engage in a risky maneuver, assuming that after dropping the payload, the vehicle will be lighter and thus able to recover without impacting on the terrain. The output of the optimizer consists of a full state trajectory for the whole planned maneuver. These outputs were tested with both simulators and real platforms.eng
dc.language.isoENG
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectTime-Varying Parameters MPC,Autonomous Aerial Firefighting,Aggressive Maneuvers for UAV,Autonomous Precision Aerial Dropping,Trajectory Optimization for UAV,Real Time Trajectory Planning for UAVcze
dc.subjectTime-Varying Parameters MPC,Autonomous Aerial Firefighting,Aggressive Maneuvers for UAV,Autonomous Precision Aerial Dropping,Trajectory Optimization for UAV,Real Time Trajectory Planning for UAVeng
dc.titlePrediktivní řízení autonomní helikoptéry s časově proměnou hmotnostícze
dc.titlePredictive control of an unmanned aerial vehicle with a time-variable masseng
dc.typediplomová prácecze
dc.typemaster thesiseng
dc.date.accepted
dc.contributor.refereeGurtner Martin
theses.degree.disciplineKybernetika a robotikacze
theses.degree.grantorkatedra řídicí technikycze
theses.degree.programmeKybernetika a robotikacze


Soubory tohoto záznamu




Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam