ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Department of Theoretical Computer Science
  • Bachelor Theses - 18101
  • View Item
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Department of Theoretical Computer Science
  • Bachelor Theses - 18101
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hluboké učení ve velkých archívech astronomických spekter

Deep Learning in Large Astronomical Spectra Archives

Type of document
bakalářská práce
bachelor thesis
Author
Podsztavek Ondřej
Supervisor
Škoda Petr
Opponent
Šimeček Ivan
Field of study
Teoretická informatika
Study program
Informatika
Institutions assigning rank
katedra teoretické informatiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Velké astronomické archívy, jako například spektrální archív LAMOST, obsahují řadu skrytých informací. Hluboké učení je jednou z nejpopulárnějších dnes používaných metod pro získávání znalostí z tohoto druhu dat. Tato práce popisuje proces hledání spekter s emisními čarami v archívu LAMOST za použití hluboké konvoluční neuronové sítě naučené na datech z ondřejovského 2m teleskopu. Práce popisuje několik metod jako je předzpracování spekter, doménová adaptace ondřejovských dat na rozlišení archívu LAMOST, redukce dimenzionality, návrh a učení dvou neuronových sítí. V závěru práce je diskuze objevených objektů se zajímavou fyzikální podstatou, které vyžadují další detailní analýzu.
 
Large astronomical archives, as for example LAMOST spectral archive, contain plenty of hidden information. Deep learning is currently very popular method used to gain knowledge from this kind of data. This work shows the process of finding emission-line spectra in LAMOST archive using deep convolutional neural network trained on data from Ondřejov 2m telescope. Overview of several techniques as spectra preprocessing, domain adaptation of Ondřejov data to LAMOST resolution, dimensionality reduction, architecture and training of two deep neural networks are presented. Finally, discovered objects with interesting physical nature deserving further detailed analysis are discussed.
 
URI
http://hdl.handle.net/10467/69666
View/Open
PLNY_TEXT (1.933Mb)
POSUDEK (114.4Kb)
POSUDEK (109.9Kb)
Collections
  • Bakalářské práce - 18101 [351]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV