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Abstrakt / Abstract
Velké astronomické archívy, jako na-

příklad spektrální archív LAMOST,
obsahují řadu skrytých informací. Hlu-
boké učení je jednou z nejpopulárnějších
dnes používaných metod pro získávání
znalostí z tohoto druhu dat. Tato práce
popisuje proces hledání spekter s emis-
ními čarami v archívu LAMOST za
použití hluboké konvoluční neuronové
sítě naučené na datech z ondřejovského
2m teleskopu. Práce popisuje několik
metod jako je předzpracování spekter,
doménová adaptace ondřejovských dat
na rozlišení archívu LAMOST, redukce
dimenzionality, návrh a učení dvou neu-
ronových sítí. V závěru práce je diskuze
objevených objektů se zajímavou fyzi-
kální podstatou, které vyžadují další
detailní analýzu.

Klíčová slova: hluboké učení, neuro-
nové sítě, redukce dimenzionality, domé-
nová adaptace, astroinformatika, astro-
nomie, LAMOST, TensorFlow

Překlad titulu: Hluboké učení ve vel-
kých archívech astronomických spekter

Large astronomical archives, as for
example LAMOST spectral archive,
contain plenty of hidden information.
Deep learning is currently very popular
method used to gain knowledge from
this kind of data. This work shows the
process of finding emission-line spec-
tra in LAMOST archive using deep
convolutional neural network trained
on data from Ondřejov 2m telescope.
Overview of several techniques as spec-
tra preprocessing, domain adaptation of
Ondřejov data to LAMOST resolution,
dimensionality reduction, architecture
and training of two deep neural net-
works are presented. Finally, discovered
objects with interesting physical nature
deserving further detailed analysis are
discussed.

Keywords: deep learning, neural
networks, dimensionality reduction,
domain adaptation, astroinformatics,
astronomy, LAMOST, TensorFlow
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Chapter 1
Introduction

Astronomy and science in general are transformed by exponential growth of data which
provides huge opportunities for discovery. Modern large telescopes like large mosaics of
CCD chips are producing terabytes of raw data per night. For example the world largest
spectrograph of LAMOST telescope is acquiring 4 000 spectra per single exposure. As-
tronomy is facing an avalanche of data that can be process only with sophisticated and
innovative approaches.

Recent advance in deep neural networks have brought breakthroughs in processing
images, video, speech and audio. Deep learning is able to discover intricate structure
in large datasets. Thus deep networks should also help to make new discoveries in
astronomy.

The goal of this work is to identify emission-line spectra in the LAMOST spectral
survey archive using deep neural network which is trained on spectra from Ondřejov
archive.

This work starts with introduction to spectral data in chapter 2. Chapters 3 and
4 introduce basics of machine, deep and transfer learning. In chapter 5 is survey of
currently available Python frameworks for deep learning. Chapter 6 describes the cre-
ation and properties of Ondřejov dataset which is used for network training. Chapter 7
is about preprocessing methods applied to the data. Visualizations of Ondřejov and
LAMOST data space are shown in chapter 8. The last chapter 9 presents architec-
ture of the deep neural network, its training and classification results of spectra from
LAMOST.
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Chapter 2
Spectral Data

This thesis is concerned with classification of star’s spectra. Aim of this chapter is to
describe this kind of data. The following sections introduce spectroscopy, its related
concepts, Ondřejov and LAMOST astronomical archives of spectral data.

2.1 Astronomical Spectroscopy
Spectroscopy in astronomy is the study of celestial objects’ spectra. The different wave-
lengths of electromagnetic radiation are spread out into a spectrum. This information
is then used to derive chemical composition, temperature, distance, relative motion and
much more. [1]

2.2 Electromagnetic Radiation
Electromagnetic radiation is pair of electric and magnetic fields that propagate together
at the speed of light (c = 299 792 458 ms−1). Visible light, radio waves, X-rays and
gamma rays are examples of electromagnetic radiation. Electromagnetic spectrum is
collective term for known range of electromagnetic radiation. The electric and magnetic
field oscillates and produces electromagnetic waves. [2]

The electromagnetic wave is described in terms of frequency or wavelength:.Frequency (f) is the number of waves per second and its unit is Hertz..Wavelength (λ) is the distance between successive crests or troughs in the wave and
it is measured is meters or astronomy usually uses Ångströms (1 Å = 10−10 m).

Frequency and wavelength are related by wave equation:

c = λf (2.1)

2.3 Black Body Radiation
A black body is a hypothetical object which is a perfect absorber and emitter of radia-
tion over all wavelengths. The spectral flux distribution of black body’s thermal energy
depends on its temperature (see figure 2.1). Stars are often modeled as black bodies in
astronomy. Their spectrum approximates the black body spectrum. [2]

2.4 Spectrum Continuum
Each spectrum is characterized by the continuum and the spectral lines. The continuum
is generally smoothly varying spectrum of light emitted by a star while spectral lines
are peaks reaching out from a continuum. [3]

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Spectral Lines

Figure 2.1. Black body radiation curves of 3 000, 4 000 and 5 000 Kelvins hot stars.

In order to avoid variations between different observations a continuum is usually
normalized to serve as reference point to spectral lines (see figure 2.2). A smooth curve
is fit to the continuum and then the spectrum is divided by it. This sets the continuum
everywhere to value 1 and allows to measure spectral lines in consistent way.

2.5 Spectral Lines
Spectral lines can be used to identify the chemical composition of stars. If a light from
a star is separated with a prism its spectrum of colors is crossed with discrete lines.
This can be also visualized as flux of particular wavelengths. Flux is the total amount
of energy that crosses a unit area per unit time.

There are two types of spectral lines:. emission and.absorption lines.

Emission line occurs when atom in a higher energy level (excited state) return to
lower energy level and releases energy. According to quantum theory every atom has a
unique set of energy levels. Therefore, the atom can emit electromagnetic radiation of
particular wavelengths equal to the difference between the energy levels. Energy and
wavelength, frequency are related through Planck-Einstein relation:

E = hf, E = hc

λ
(2.2)

3



2. Spectral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. Comparison between raw spectrum and corresponding spectrum with normal-
ized continuum.

where h = 6.62607004 · 10−34 J · s is Planck constant and c is the speed of light. On a
graph of wavelengths fluxes emission lines appear as peaks above the continuum level.

Absorption lines are opposite of emissions. They will appear when there is an ab-
sorbing material between the source and the observer. The material could be outer
layers of a stars or interstellar gas. Atoms will absorb specific energies from the elec-
tromagnetic spectrum specifically to atom’s energy levels. On graph these absorption
features are show below the level of a star’s black body continuum spectrum.

2.5.1 Balmer Lines

The Balmer lines or Balmer series is the name of spectral lines of hydrogen atom that
result from electron transitions between second energy level and higher levels. There
are four transitions that are in visible wavelength. These are named Hα, Hβ, Hγ and
Hδ. Because hydrogen is most abundant element Balmer lines are a commonly observed
features in spectroscopy. [2]

Hα is deep-red visible spectral line. Its wavelength in air is 6 562.8 Å and in vacuum
is 6 564.6 Å. This spectral line is created when electron moves between the second and
third energy level of hydrogen atom.

4
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Figure 2.3. Spectra of gamma Cas and alpha Lyr with emission and absorption line in Hα
respectively.

2.6 Be Stars
Be stars are non-supergiant B stars1 with spectrum that has or had one or more
Balmer lines in emission at some time. Although this definition is not precise it is
sufficient for purpose of this work. [5]

It is believed that a Be star consists of fast rotating star and star disk which may
cause the emissions in Balmer lines. Absorptions and emissions in electromagnetic
spectrum of Be star can periodically vary.

2.7 Ondřejov Archive
Archive of Ondřejov observatory spectral data is available at ASU CAS Data Center2.
It currently contains about 17 000 spectra [6]. Because this archive is specialized on
Be stars observations it contains approximately 13 000 spectra with Hα spectral line.
The data were obtained with Ondřejov Perek 2 m telescope, coudè camera with focus
700 mm and two different detectors changed over time. The spectrograph’s spectral
resolving power is about 13 000 in Hα [7].

Spectral resolving power of a spectrograph is defined as:

1 Stars from spectral type B are hydrogen burning stars which have 2 to 16 times the mass of the Sun
and surface temperatures between 10 000 and 30 000 K. [4]
2 http://voarchive.asu.cas.cz/
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2. Spectral Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R = λ

∆λ (2.3)

where ∆λ is spectrum resolution which stands for the smallest difference in wave-
lengths that can be distinguished at a wavelength of λ.

Figure 2.4. Spectra of BT CMi star from Ondřejov and LAMOST archive.

2.8 LAMOST Archive
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is tele-
scope located in China with spectral resolving power 500, 1 000 or 1 500. LAMOST
archive contains more than 7 millions of spectra. The latest observations are available
in data release 5 Q11. [8]

survey total spectra stars
pilot 958 944 812 911
first year 1 701 669 1 529 958
second year 1 648 485 1 501 002
third year 1 659 028 1 511 032
forth year 1 713 059 1 543 415

total 7 681 185 6 898 318

Table 2.1. Statistics of LAMOST data releases according to [9].
1 http://dr5.lamost.org/

6
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2.9 FITS File Format
Flexible Image Transport System is data format used within astronomy for transporting,
analyzing, archiving scientific data files. It is designed to store datasets consisting of
multidimensional arrays and two dimensional tables. [10]

A FITS file is comprised of segments called Header/Data Units (HDUs). The first
HDU is called the primary HDU. The primary data array can contain a 1–999 di-
mensional array of numbers. A typical primary array could contain a 1 dimensional
spectrum, a 2 dimensional image, a 3 dimensional data cube.

Any number of additional HDUs may follow the primary array. These HDUs are
referred as extensions. There are three types of standard extensions currently defined:. Image Extension.ASCII Table Extension.Binary Table Extension

Every HDU consists of an ASCII formatted header unit and data unit.
Each header unit contains a sequence of fixed-length 80 character long keyword record

which has form:

KEYNAME = value / comment string

Non-printing ASCII character such as tabs, carriage-returns, line-feeds are not al-
lowed anywhere in the header unit.

Note that the data unit is not required. The image pixels in primary array or an
image extension may have one of 5 supported data types:.8-bit (unsigned) integer bytes.16-bit (signed) integer bytes.32-bit (signed) integer bytes.32-bit single precision floating point real numbers.64-bit double precision floating point real numbers

The other 2 standard extensions, ASCII tables and binary tables, contain tabular
information organized into rows and columns. Binary tables are more compact and are
faster to read and write then ASCII tables.

All the entries within a column of a table have the same datatype. The allowed data
formats for an ASCII table column are integer, single and double precision floating
point value, character string. Binary table also support logical, bit and complex data
formats.

7



Chapter 3
Machine Learning

Machine learning is subfield of artificial intelligence [11]. Algorithms in machine learn-
ing allow computer programs to learn from data [12]. Samuel Arthur proposed this
famous statement about machine learning in [13]: “Programming computers to learn
from experience should eventually eliminate the need for much of this programming
effort.” Formal and widely used definition is provided by Tom Mitchell in [14]: “A
computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P ,
improves with experience E.”.

Therefore, instead of hard coding the desired model directly into program, data are
fed into machine learning algorithm which develops its own model. This is called data-
driven approach since it depends on providing the algorithm with vast amount of data.
[15]

For example considering the image classification program it would be challenging
to hard code into program how general dog looks. Machine learning algorithm in
combination with data-driven approach would take large collection of dog’s images,
feed them into program and let it develop its own notion of what a dog looks like.

Commonly, machine learning is divided into supervised and unsupervised learning.
In supervised learning, there is a dataset and its corresponding output values. Super-
vised algorithms are used for solving classification or regression tasks. In classification
inputs are assigned from a set of discrete values. On contrary, regression predicts out-
puts from continuous range. Unsupervised learning allows to solve problems where is
no or little idea about the result. [12]

3.1 Deep Learning
Conventional machine learning techniques were limited in ability to process raw natu-
ral data. Machine learning algorithm required careful design of feature extractor that
transformed the raw data into suitable feature vectors from which the learning subsys-
tem could classify patterns in the input.

Deep learning methods are representation learning methods with multiple levels of
representation obtained by composing simple but non-linear modules. With the com-
position of enough such transformation higher layers of representation amplify aspects
of the input that can be important for discrimination. The key is that these layers of
features are not designed by humans but learned from data. [16]

3.2 Feedforward Neural Networks
Many applications of deep learning use feedforward neural network architectures.
Schema of feedforward neural network in in figure 3.1. To go from one layer to the
next a set of units compute a weighted sum of their inputs from previous layer and

8
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Figure 3.1. Feedforward neural network with 4 fully connected layers. The input layer
has 3 units followed 2 hidden layers with 4 and 3 units. Output layer contains 2 units.

apply non-linear function to the result. Units that are not in the input or output layer
are called hidden units. These hidden layers of a multi layer neural network can distort
the input space to make the classes linearly separable.

3.3 Convolutional Networks
Convolutional neural networks (CNNs, ConvNets) are one particular type of deep feed-
forward network that is much easier to train and generalize much better than fully
connected networks. [16]

These networks are designed to process data in form of multiple arrays, for instance
1 dimensional signals or 2 dimensional images. They take advantage of four properties:. local connections,. shared weights,.pooling,.use of many layers.

Typical convolutional neural network is structured as series of stages. First stages
are composed of convolutional layers and pooling layers. Units in convolutional layer
maps to next layer through several filters that are convoluted with inputs from previous
layer. These results are passed through a non-linearity. Nowadays, the most widely
used non-linearity is rectified linear unit (ReLU):

f(z) = max(z, 0) (3.1)

The reasons for this architecture are that local groups of values are highly correlated
and motifs can appear in any part of image or signal. Mathematically, the filtering
operation is discrete convolution, hence the name.

9



3. Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pooling layers are used to merge semantically similar features into one. This layer

usually computes maximum of a local patch of units. Thereby, they reduce the dimen-
sions of the representation and invariance to small shifts. [16]

10



Chapter 4
Transfer Learning

A common assumption in machine learning is that the training and data faced in de-
ployment must be in same feature space and have the same probability distribution (see
diagram 4.1). For example, this thesis is interested in classification of LAMOST archive
but its training set from Ondřejov spectrograph. In such cases as much knowledge as
possible need to be transfer to maximally improve performance of final classifier on
target data. [17]

Figure 4.1. Diagram of transfer learning process. Inspired by [17].

Formal definition of transfer learning is provided in [17]. Domain D consists of a
feature space X and a probability distribution P (X) where X = {x1, ..., xn} ∈ X is
a learning sample. Given a specific D = {X , P (X)} and a learning task T = {Y, f}
where Y is a label space and f is a predictive function. This predictive function f is
learned from training set which consist of pairs {xi ∈ X, yi ∈ Y}. From probabilistic
perspective f is P (y | x).

Therefore, having a source domain DS and a task TS , a target domain DT and a task
TT , transfer learning aims to improve the performance of function fT from TT using
knowledge from DS and TS , when DS 6= DT or TS 6= TT .

In [18] transfer learning is divided into four scenarios according to how source and
target conditions vary:

1. XS 6= XT , feature spaces of domains are different, e.g. in one domain picture is
represented in pixels and in the other domain is described by text.

2. P (XS) 6= P (XT ), probability distribution of source and target domains are different,
e.g. two spectral archive observe different kinds of stars.

3. YS 6= YT , labels of tasks are not the same, e.g. spectra should be assign different
labels in target task. This usually occurs with the fourth scenario.

11



4. Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4. P (YS | XS) 6= P (YT | XT ), probability distribution of tasks are different.

4.1 Domain Adaptation
In transfer learning the case when probability distribution of source and target domains
are different, P (XS) 6= P (XT ), is generally known as domain adaptation. [18]

Thus domain adaptation considers the setting in which the training and target data
are sampled from different distributions. The learning problem consists of finding a
function realizing a good transfer of knowledge from DS to DT . That means the model
trained on data drawn from distribution P (XS) generalizes well on data drawn from
P (XT ). [19]

12



Chapter 5
Deep Learning Frameworks

There are tens of deep learning frameworks. This chapter makes overview of such
frameworks in order to choose the most suitable for purposes of this thesis. Several
aspects have been taken into account:. extensive documentation.open source project. long term support. scalable and GPU ready.allows fast experiments.Python API

The three first points should assure that this work will be maintainable in future.
This work is faced with vast amount of data so it is desirable to choose scalable and
GPU ready framework. On contrary, one goal is to find great deep neural network
architecture which means that fast experimentation is crucial. Last two points support
the goal of this thesis to find the best deep neural network architecture and because
the author of this work is comfortable with Python.

NVIDIA’s website1 lists popular deep learning frameworks. These include Caffe,
TensorFlow, Theano, Torch and Keras. Torch is excluded because it has not Python
bindings [20].

5.1 Caffe
Caffe is BSD-licensed C++ deep learning framework with Python and MATLAB bind-
ings. It serves for training and deploying convolutional neural networks and other deep
models. By separating model representation from actual implementation, Caffe allows
seamless switching among CPU, GPU and other architectures. The project is main-
tained by Berkeley Vision and Learning Center with help of community of contributors
on GitHub2. Documentation and examples are available at Caffe website3. [21]

According to experimental results in [22] Caffe has one of the best performances on
both GPU and CPU platforms.

5.2 TensorFlow
TensorFlow is library developed by Google for expressing machine learning algorithms
and an implementation for executing such algorithms. It is licensed under Apache 2.0
open source license and its code is available on GitHub4. A computation in TensorFlow
1 https://developer.nvidia.com/deep-learning-frameworks
2 https://github.com/BVLC/caffe/
3 http://caffe.berkeleyvision.org/
4 https://github.com/tensorflow/tensorflow
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is described by a directed graph which can be executed with little or no change on
CPUs or GPUs. Currently implemented front-ends are C++ and Python. This project
has extensive documentation with examples and tutorials1. [23]

In order to help development and debugging TensorFlow provides visualization tool
called TensorBoard. This tool can visualize computation graphs and summary statistics
such as values of loss function, weights and so on.

5.3 Theano
Theano is a Python framework for working with mathematical expression. Even though
Theano is not developed as deep learning framework it can be consider as it is because
primarily usage is to implement mathematical models in a symbolic way and then used
them in machine or deep learning. Theano is open source software and is licensed under
BSD license. Its source code is versioned in repository on GitHub2. Main features are in
language to represent mathematical expressions, a compiler to create code to compute
these expressions and library to evaluate them. This structure allows to optimize code
for both CPUs and GPUs. [24]

As stated in [24] although Theano is developed and mainly used for research in deep
learning it is not a deep learning framework in itself. Several software packages have
been developed to provide higher-level user interface for instance Keras, Blocks and
Lasagne.

5.4 Keras
Keras is high-level neural networks API. It is written in Python and it runs on top
of either TensorFlow or Theano. It focuses on fast prototyping and experimentation.
Because it is interface to TensorFlow or Theano it can use both CPU and GPUs. Its
website3 provides good documentation and its code is open source under MIT license
on GitHub4. [25]

Recently Keras API is integrated into tf.contrib.keras module of TensorFlow 1.1.0
and then will be moved into tf.keras in version 1.2.0. Therefore, there will be two
separate implementations of the Keras specification one written in pure TensorFlow
and second compatible with both Theano and TensorFlow. [26]

5.5 Consideration
TensorFlow in version 1.1.0 is chosen for implementation in this thesis. It is the most
suitable framework because it has both low level interface and high level Keras interface.
Moreover, TensorBoard is great tool for graph and dataset interactive visualizations as
it contains built-in PCA and t-SNE dimensionality reduction algorithms. Stated in [27]
TensorFlow is currently the most popular and future promising deep learning framework
in machine learning community.

1 https://www.tensorflow.org/
2 https://github.com/Theano/Theano/
3 https://keras.io/
4 https://github.com/fchollet/keras
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Chapter 6
Classifying Ondřejov Archive

This chapter discusses collection and classification of spectral dataset from Ondřejov
CCD700 archive. Overview of a tool used for classification is made and then it shows
dataset’s properties and statistics.

6.1 Spectral View
Spectral View is web browser tool for classification of Ondřejov CCD700 spectral
archive. It was developed to support creation of dataset for this work. It is written in
Python using Tornado Web Framework1 and Motor2 which is asynchronous driver for
MongoDB. Visualizations are created with D3.js3. Source code is available on GitHub4

and documentation is available on Read the Docs5.
Spectra are divided into emission, absorption, double-peak and unknown classes ac-

cording to shape of spectral line at Hα (see figure 6.1).
Data import is done through a SSAP Service6. These spectra are then split into

corresponding classes by a user who is presented with visualization of full spectrum,
zoomed Hα spectral line and Gaussian convolved Hα. Classified spectra can be viewed
and move between classes on demand.

6.2 Ondřejov Dataset
The resulting dataset consists of 13 335 spectra. Structure of the dataset is shown
in table 6.1. Emission and absorption spectra are the most significant part of this
dataset. There are 45.77% spectra with absorption line in Hα and 39.75% with emission
line. But there are also 11.50% spectra with double-peak in Hα plus 2.98% spectra
which cannot be easily classified.

class count
emission 5 301
absorption 6 103
unknown 398
double-peak 1 533

Table 6.1. Number of spectra in Ondřejov dataset’s classes.

All spectra in this dataset contain Hα but they have different wavelength starts
and ends. Infimum from all wavelength starts is 6 518.43 Å and supremum from all
wavelength ends is 6 732.74 Å.
1 http://www.tornadoweb.org/en/stable/
2 https://motor.readthedocs.io/en/stable/
3 https://d3js.org/
4 https://github.com/podondra/spectralview
5 http://spectralview.readthedocs.io/
6 http://www.ivoa.net/documents/SSA/
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Figure 6.1. Examples from Ondřejov dataset of spectra from emission, absorption and
double-peak classes.
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Chapter 7
Preprocessing

This chapter describes all preprocessing methods applied on Ondřejov dataset before
processing it through a neural network. First section introduces methods to make
spectra from Ondřejov similar to spectra from LAMOST. In second section spectra are
transformed into form of two dimensional matrix. Third section explains why is scaling
of fluxes important.

7.1 Knowledge Transfer
Ondřejov and LAMOST spectrographs have different parameters (as described in sec-
tions 2.7 and 2.8). Thus, spectra from the two archives are different (see figure 2.4).
Concretely, spectra from Ondřejov archive has much more details than spectra from
LAMOST spectrograph and spectra in Ondřejov archive are stored in air wavelengths
but LAMOST stores spectra in vacuum wavelengths.

This thesis is concerned with classifying LAMOST data using data from Ondřejov.
It aims to extract as much knowledge as possible from Ondřejov data and apply it to
classification of LAMOST archive. Transfer learning and domain adaptation (described
in chapter 4) are study areas of machine learning that aim to offer methods for dealing
with these problems.

The following sections introduce methods that were applied to Ondřejov data. These
methods make the two domains more similar and so they deal with differences between
the archives.

7.1.1 Wavelength Conversion
Ondřejov and LAMOST archives store wavelengths in air and vacuum wavelength re-
spectively. When spectra of same object from the two archives are plotted on each
other they are a bit shifted (see top plot in figure 7.1). Therefore, Ondřejov spectra are
converted to vacuum wavelengths according to formulas provided in [28]:

λv = nλa (7.1)

where n = 1 + 8.34254 · 10−5 + 2.406147 · 10−2

(130− s2) + 1.5998 · 10−4

(38.9− s2) (7.2)

and s = 104

λa
(7.3)

where λv is vacuum wavelength and λa is corresponding air wavelength.
The resulting Ondřejov spectrum after air to vacuum conversion is plotted in bottom

plot of figure 7.1.
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Figure 7.1. Spectrum of object HIP47636 from Ondřejov archive before and after conver-
sion from air to vacuum wavelengths in comparison to spectrum of the same object from

LAMOST archive.

7.1.2 Gaussian Blur
According to [29] Gaussian filter smooths away high-frequency detail of images. Spec-
trum can be seen as one dimensional image. Correctly parameterized Gaussian blur
applied to Ondřejov spectrum would reduce the amount of detail and thus make it more
similar to spectra from LAMOST archive.

The equation of a one dimensional Gaussian function:

G(x) = 1√
2πσ2

e− x2
2σ2 (7.4)

where σ is standard deviation in pixels. Kernel generated by this function is convolved
with a spectrum resulting in Gaussian blur.

This work uses convolution implementation from Python package astropy [30] in
version 1.3.1. Standard deviation of value 7 was chosen after visualizing results of
convolutions (see figure 7.2). Following code implements functionality described above:

from astropy.convolution import Gaussian1DKernel, convolve

gauss_kernel = Gaussian1DKernel(stddev=7)
smoothed_fluxes = convolve(fluxes, gauss_kernel)

where fluxes is array of spectrum’s fluxes. Convolved spectrum’s fluxes are stored
to smoothed fluxes.
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Figure 7.2. Comparison of original BT CMi and V395 Aur spectra from LAMOST and
Ondřejov and spectra from Ondřejov convolved by Gaussian kernel with standard deviation

of value 7.

7.2 Regridding
To train, validate and test deep neural network two dimensional dataset matrices needs
to be created. In a matrix each row is a spectrum sample and each column represents
flux in certain wavelength. That means that grid of all spectra need to be changed to
same wavelengths.

The wavelengths range is given by Ondřejov dataset from 6 519 to 6 732 (minimum
is rounded up and maximum is rounded down to nearest integer value). Ondřejov
spectra in this range have 829, 830, 831, or 922, 923 measured fluxes according to this
thesis’s experiments. This variance is caused by change of spectrograph in Ondřejov
observatory (see section 2.7) and the small deviation by the cut of spectrum into the
range. LAMOST spectra have 140 measurements in this range inferred from 22 cross-
matched spectra.

Because Ondřejov spectra are moved to LAMOST resolution, after air to vacuum
conversion and convolution, spectra are regrided to 140 uniform points in range 6519 to
6732. To do regridding linear interpolation is used to infer new fluxes. Here is NumPy
1.12.1 [31] code carrying out this operation:

import numpy as np

new_wavelengths = np.linspace(6519, 6732, num=140)
new_fluxes = np.interp(new_wavelengths, old_wavelengths, old_fluxes)

19



7. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
where old wavelengths variable holds old wavelengths and old fluxes variable

holds corresponding fluxes of a spectrum.

7.3 Spectra Scaling
Spectra in Ondřejov dataset were classified according to their shape. But the spectra
fluxes have different intensities. Especially, emission spectra tend to have high fluxes.
It causes that spectra do not map to same space after dimensionality reduction (see
scatter plots 8.1). Therefore, all fluxes of each spectrum are scaled.

Two popular forms of scaling are bound fluxes into range (min-max scaling) and
standardization of spectrum to have zero mean and unit variance. As show in his-
tograms 7.3 originally the fluxes are in range (−0.11, 378.23), min-max scaling would
bound them to chosen range and after standardization they are in range (−8.15, 8.25).

Figure 7.3. Histograms of maxima and minima spectra fluxes before and after standard-
ization to zero mean and unit variance.

The two methods seem to work similar. In this work scaling to zero mean and unit
variance is used. Scaling of spectra fluxes is done with Scikit-learn 0.18.1 [32]:

import sklearn.preprocessing

X_scaled = sklearn.preprocessing.scale(X_original, axis=1)

where X original is input matrix of size n × 140 (n is number of spectra samples)
containing original dataset. Each row of the matrix is the 140 fluxes of a spectrum.

20



Chapter 8
Dimensionality Reduction

After the preprocessing methods mentioned in chapter 7 each spectrum is a point in
140-dimensional space. To better understand the data PCA and t-SNE dimensionality
reduction algorithms are applied to reduce each point to 2-dimensional space which can
be visualized as scatter plot. Visualization of both Ondřejov and LAMOST data are
presented.

8.1 PCA
Principal Component Analysis is statistical technique to transform a number of possi-
bly correlated variables into a smaller number of variables called principal components.
[33]

Figure 8.1. On the left size is scatter plot with first two principal components of the
original Ondřejov dataset. The plot more that difference in shape show difference in fluxes
values. Right plot displays result of PCA applied to scaled variant of the dataset. After
such preprocessing method absorption spectra are oriented in left part of the plot, emission
spectra are on the other side and double-peak spectra are spread across the whole plot.
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Left plot in figure 8.1 displays the first and the second principal component of Ondře-

jov dataset which is not standardized. After further analysis the plot express more the
intensities in spectra fluxes than the shape. The points far from the dense area in
middle-left have high fluxes. But in this work the interesting feature is shape not the
difference between in fluxes.

The plot on right side in figure 8.1 shows Ondřejov dataset with suppressed fluxes.
The scatter plot then expresses the structure of the dataset clearly. Absorption spectra
are on the left side while emission spectra are mostly on the other side. Double-peak
spectra are spread across the whole plot. This may implies that the emission and
absorption spectra can be separable by linear classifier. But the double-peak spectra
are mixed up with the other classes so hopefully a deep neural network can find a
representation in which all classes are separable.

Figure 8.2 shows PCA applied to sample of LAMOST spectra plotted with all spectra
from Ondřejov. The plot uncovers that most of spectra in LAMOST have absorption
lines. A lot of points are not similar to any Ondřejov data. But there are probably
also emission and double-peak spectra. This is expected behavior because Ondřejov
archive is focused on observing emission and double-peak spectra (see section 6) while
LAMOST observation is not specialized.

Figure 8.2. The first two principal components of 50 000 random spectra from LAMOST
data release 1 and whole Ondřejov dataset. Majority of LAMOST spectra seems to be
absorptions but there are some points near to double-peak and emission spectra from

Ondřejov.
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8.2 t-SNE
T-Distributed Stochastic Neighbor Embedding visualizes high-dimensional data by
giving each point a location in a two or three dimensional map. It is kind of Stochastic
Neighbor Embedding. Unlike PCA (which is linear technique that focus on keeping
the low-dimensional representations of dissimilar points far apart) t-SNE is capable of
capturing both global and local structure. [34]

Visualization of Ondřejov dataset with t-SNE is in figure 8.3. Same as experiments
in [34], dataset is firstly reduced to 30 dimensions with PCA and then reduce to two
dimensions using Scikit-learn implementation of t-SNE. Perplexity, which is t-SNE pa-
rameter, is set to value 40.

Figure 8.3 of t-SNE visualization is very similar to PCA scatter plot 8.1. Absorption
spectra are on the left side and emission spectra are on right side. Double-peak spectra
are more oriented in the middle but they do not form their own cluster.

Figure 8.3. Visualization of Ondřejov dataset with t-SNE. The input data are standardized
(see section 7.3) and reduced to 30 dimensions with PCA.

Result of t-SNE application on LAMOST data with same parameterization is in
visualization 8.4. There are 5 000 random data points from LAMOST and 1 000 random
points from Ondřejov. Data are firstly standardized and reduced to 30 dimensions with
PCA.

The scatter plot shows a big cluster with absorption spectra on left and smaller
cluster of emission spectra on right. Unlike in figure 8.2 there seems to be no spectra
from LAMOST too far away from Ondřejov spectra.
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Figure 8.4. Visualization of 5 000 spectra from LAMOST data release 1 and 1 000 spectra
from Ondřejov reduced to two dimensions with t-SNE.
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Chapter 9
LAMOST Classification

In this chapter all knowledge from previous chapters is gathered and used to classify
LAMOST data release 1 which contains spectra from pilot and first year surveys (see
table 9). Firstly, architecture and training of a deep neural network is described followed
by evaluation and visualizations of results.

9.1 Neural Network Architecture
A feedforward neural network and a convolutional neural network were design. After
evaluation on test set the convolutional network was chosen for final classification.

Design choices follow guide provided by [15]. The main idea is to build rather
deeper neural network which has a lot of representation power and use dropout (see
section 9.1.1) to avoid overfitting. Next sections describe dropout and architectures.

9.1.1 Dropout
Dropout is technique for addressing problem of overfitting. The key idea is to randomly
drop units from the neural network during training. Dropout created different smaller
networks by blocking units of a big network. This prevents units from co-adaption and
at test time the neural network with all units but smaller weights is average of all the
smaller networks from training. [35]

9.1.2 Feedforward Network
The feedforward network has input layer with 140 units. Then there are 5 hidden
layers with 512 units and the last output layer has 3 units with softmax activation
function [36] because there are 3 target classes.

Every hidden layer’s activation function is ReLU (see section 3.3). During training
dropout (see subsection 9.1.1) is applied with a unit dropout probability set to 0.5 as
recommended by [35].

9.1.3 Convolutional Network
Architecture of convolutional network for spectra classification in this work is inspired
primarily by VGGNet [37], AlexNet [38] and ZFNet [39]. These networks are design
to process three dimensional images counting RGB color channels. Spectrum can be
understood as one dimensional image. Therefore the architecture needs to be suited to
this difference.

Sketch of architecture diagram is in figure 9.1. The input layer has 140 units and
output layer has 3 units with softmax activation [36]. In the middle there are convolu-
tional layers all with filter size 3 pixels and no padding. First 2 layers have 64 of the
filters. Second 2 layers have 128 of them and the last 2 layers have 256 filters. After
each pair of convolutional layers is a max-pooling layers of size 2 pixel with stride 2.
The last max-pooling layer is followed are 2 fully-connected layer with 512 units each
and dropout with probability 0.5 [35] applied in training. All hidden layers use ReLU
activation function.
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Figure 9.1. Architecture of the convolutional neural network. Convolutional layers are
mark as conv3 where the number 3 means the size of filter in pixels. The mark is followed
by dash and a number which specifies count of filters. maxpool2 are max-pooling layers
with pool size 2, stride 2 and no padding. Fully-connected layer with 512 units are fc-512

and softmax is the output layer.

9.2 Training Details
The process of babysitting the neural network training is described in this section.
Dataset split and balancing is introduced. Then the hyperparameters of training the
network are described. Lastly the networks’ performance is evaluated.

9.2.1 Dataset Split
This subsection shows how the Ondřejov dataset is split into training, validation and
test set. These sets are required for training, tuning and evaluating any neural network.
All split are done as stratified sampling so that the distribution of samples’ number in
a class is kept across sets.

Test set on which neural networks are evaluated contains 10% of all data. Validation
set which serves for hyperparameter and architecture optimization is 20% of remaining
data. Training set is composed from the rest of data and its purpose is for training
networks’ weights. Exact numbers of spectra in each set is in table 9.1.

set emission absorption double-peak total
train 3 817 4 393 1 104 9 314
validation 954 1 099 276 2 329
test 530 611 153 1 294

Table 9.1. Exact numbers of samples in train, validation and test set divided according
to emission, absorption and double-peak classes.
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9.2.2 SMOTE Balancing
SMOTE is shortcut for Synthetic Minority Over-sampling Technique. It is over-
sampling approach in which the minority class is over-sampled by creating synthetic
samples. A new sample is created along line from a sample to its all or any k nearest
neighbors from same class. Difference between feature vectors of sample under consid-
eration and nearest neighbor is taken. It is multiply by random number between 0 and
1. Finally it is added to the sample. [40]

In this thesis SMOTE balancing is used to balance training set because the absorp-
tion class which can be considered as normal class has the biggest number of samples
while the emission and double-peak classes has significantly less samples. Emission and
double-peak spectra which are the abnormal behaviors then tend to be discriminated
by the neural network.

Confusion matrix 9.2 is proof of this. The matrix shows 92% accuracy on double-
peak spectra of the feedforward neural network on imbalanced dataset. In contrast to
94% accuracy when training on SMOTE balanced dataset (see confusion matrix on the
left in figure 9.4).

Figure 9.2. Confusion matrix evaluated on validation set of feedforward network trained
on imbalanced dataset. Note the low double-peak spectra accuracy.

In this work implementation of SMOTE from Scikit-learn contribution Python pack-
age imbalanced-learn [41] in version 0.2.1 is used:

import imblearn.over_sampling

N_CLASSES = 3
smote = imblearn.over_sampling.SMOTE()
for _ in range(N_CLASSES - 1):

X, y = smote.fit_sample(X, y)
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where X is input and also output matrix with training data and y is vector of corre-

sponding labels.

9.2.3 Training Setting
Training a neural networks is an optimization problem. The function to optimize is
categorical cross-entropy loss function (see online book [36]).

To optimize to the loss function Adam optimizer is used. It is an algorithm for first-
order gradient-based optimization of stochastic objective functions. Parameters are set
to values recommended by its paper (learning rate α = 0.001, decay rates β1 = 0.9 and
β2 = 0.999, fuzz factor ε = 10−8). These are also the defaults in Keras implementation
which is available in TensorFlow. [42]

Figure 9.3 shows the CNN’s progress of accuracy and loss over 250 epochs (the
training set was presented to the network for learning 250 times). The increase of
accuracy is fast and training and validation accuracies are close to each other so there
is little overfitting.

Figure 9.3. Convolutional network training statistics during 250 epochs with batch size
256. The top plot shows training and validation accuracy and the bottom plot shows

decrease of loss.

In TensorFlow this implements code:

import tensorflow.contrib.keras as keras

model = keras.models.Sequential([
# definition of neural network
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])
model.compile(

loss=’categorical_crossentropy’,
optimizer=’adam’,
metrics=[’accuracy’]

)
model.fit(

X_train, y_train_one_hot, epochs=250, batch_size=256
validation_data=(X_validation, y_validation_one_hot)

)

where X train and X validation are matrices with spectral data, y train one hot
and y validation one hot are classes one hot matrices.

9.2.4 Evaluation

Networks are evaluated on the test set. From confusion matrices in figure 9.4 is clear
that convolutional network perform slightly better. CNN predicted correctly 99% of
emission spectra while the feedforward network only 98%. Both predicted 99% of
absorptions correctly. In double-peak spectra prediction convolutional network has
accuracy 95% and feedforward network 94%. Thus convolutional neural network is
chosen for classification of spectra from LAMOST.

Figure 9.4. Confusion matrices of both networks’ predictions on test set. CNN (right
matrix) performs slightly better than feedforward network.
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9.3 Performance and Scalability

Recent advance in deep neural network research would not be possible without perfor-
mance improvement of general purpose GPUs. [38] This thesis makes similar obser-
vation. The convolutional network was experimentally trained on GPU GeForce GTX
980 and two Intel Xeon CPUs. The GeForce GTX 9801 has 2 048 CUDA cores and
4 GB of memory. The two Intel Xeon CPUs E5-24032 has 8 cores in total and 24 GB
of available RAM. Results are presented in table 9.2.

architecture user time sys time wall time
2 Intel Xeon E5-2403 346 min 35 s 41 min 12 s 99 min 36 s
GeForce GTX 980 4min 1 s 22 s 3min 39 s

Table 9.2. Comparison of training convolutional neural network on GPU and CPU. The
training is done on whole Ondřejov dataset, number of epochs is 100 and batch size is 256.

In terms of wall time (elapsed real time) there GPU is roughly 27 times faster.

Table 9.2 confirms the need of GPU computational power for deep neural networks
training. Training on GPU is 27 times faster than on CPU. For large networks there
might be memory problems on GPU but the net design in this thesis does not require
a lot of memory. Moreover TensorFlow support distributed computation so the whole
system may scale to more GPU cards on demand. [23]

9.4 Results and Visualizations
For the final classification the convolutional network (diagram 9.1) is trained on whole
Ondřejov dataset. The training was stopped after 229 epochs with 99.96% accuracy
on training set and lasted only 8 minutes 21 seconds.

Prediction of 2 202 000 spectra from LAMOST data release 1 has taken 1 minute
36 seconds. The spectra are interpolated to same grid as spectra Ondřejov dataset
(see section 7.2) and standardized (see section 7.3). The number of spectra classified
into the classes is in table 9.3.

class number of spectra
emission 158 115
absorption 1 898 095
double-peak 145 790

Table 9.3. Counts of LAMOST spectra split according to predicted classes.

The table 9.3 shows that the convolutional network reduced the number of possibly
interesting object (emission or double-peak) from 2 202 000 to 303 905. That is about
14% from whole LAMOST data release 1. While visualizing spectra according to pre-
dicted classes good representatives can be found. Figures 9.5 and 9.6 show examples of
correctly classified spectra from the interesting emission and double-peak classes. But

1 http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980
2 http://ark.intel.com/products/64615/Intel-Xeon-Processor-E5-2403-10M-Cache-1_80-GHz-

6_40-GTs-Intel-QPI
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Figure 9.5. Three correctly predicted emission spectra from LAMOST data release 1.

there are also noisy spectra of different kinds mix up with good class candidates. Espe-
cially in double-peak class where the noise near to absorption line in often incorrectly
consider as double-peak.

This imperfection of the deep convolutional classifier is probably caused by insuffi-
cient training set. The Ondřejov dataset and Ondřejov archive in general is composed
of not noisy well captured spectra. Therefore the neural network is not trained to rec-
ognize noisy or damaged spectra and put them apart. It has to predict them as one of
the three classes.

Principal component analysis of LAMOST data space in figure 8.2 also proofs the
Ondřejov dataset limitation. Although the points from Ondřejov dataset used during
training cover most of the LAMOST data there are some areas where the dataset has
no points at all. These are probably the points were the classifier misjudge spectra
because it has no prior knowledge about them.

To overcome this problem either a method which can filter the noisy spectra out
should be used or the dataset should be extended with new class where should the
classifier put noisy spectra.
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Figure 9.6. Three correctly predicted double-peak spectra from LAMOST data release 1.
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Chapter 10
Conclusion

Goal of this work was to classify emission-line spectra in LAMOST using deep neural
network trained on spectra from Ondřejov.

For classification three classes of absorption, emission and double-peak spectra were
chosen. Training dataset from Ondřejov spectra was created containing 13 335 spectra.
Then it was found that to transfer Ondřejov spectra to LAMOST domain wavelength
conversion and Gaussian blur with standard deviation of value 7 should be applied to
all spectra from Ondřejov. Preprocessing techniques as regridding and spectra scaling
were used to make the data suitable for neural networks learning.

PCA and t-SNE dimensionality reduction algorithms have shown that absorption
and emission spectra should be easily separable but double-peak spectra require more
sophisticated method as deep learning.

Deep convolutional network was evaluated as best choice of architecture for spectra
classification. It architecture and training was described. Finally results of classification
with the network were presented. The LAMOST data release 1 containing 2 202 000
spectra was reduced to 303 905 candidates (emissions and double-peaks). Although
these candidates contains a lot of interesting emission-line spectra deserving further
analysis there are plenty of noisy misclassified spectra especially in double-peak predic-
tions.

In future it would be possible to reduce the number of noisy misclassified spectra
either by extension of the Ondřejov dataset or by method which could identify noisy
spectra.
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Appendix A
Contents of CD

/
README.md . . . . . . . . . . . . . . . . . . . . . . . .Markdown file with CD content information
notebooks/ . . . . . . . . . . . . . . . . . . . .directory of Jupyter notebooks and source code

data/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .data files directory
spectraldl/ . . . . . . . . . . . . . . . . . . . . . . source code of developed Python module
00-spectroscopy.ipynb . . . . . . . . . . . . . . . . . . . . . . introduction to spectroscopy
01-data-download.ipynb . . . . . . . . . . . . . . . . . download of data from Ondřejov
02-data-to-hdf5.ipynb . . . . . . . . . . . . . . . . . . . . . data transformation to HDF5
03-labeled-data.ipynb . . . . . . . . . . . . . . . . . . . . . . . . analysis of labeled dataset
04-cross-matched.ipynb . . . . . . . . . . . . . . . cross-matching of the two archives
05-domain-adaptation.ipynb . . . . . . . . . . . . . domain adaptation experiments
06-regridding.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . testing of spectra regridding
07-dataset.ipynb . . . . . . . . . . . . . . . . . . . . . . train, validation and test set splits
08-dimensionality.ipynb . . . . . . . . . . . . . . . . . . . . . archives data visualizations
09-nns.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . networks design and evaluation
10-convnet.ipynb . . . . . . . . . . . . . . . . . . . . . . . classification of LAMOST spectra
11-candidates.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . candidates visualizations
Dockerfile . . . . . . . . . . . . . . . assemble commands of image used for notebooks
requirements.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . list of dependency packages

src/ . . . . . . . . . . . . . . . . . . . . . . . . . . . .directory of TEX source code files of the thesis
img/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . thesis figures directory
*.tex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEX source code files of the thesis
references.bib . . . . . . . . . . . . . . . . . . . . . . BibTEX source code file of references

text/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .the thesis text directory
bt-podsztavek.pdf . . . . . . . . . . . . . . . . . . . . . . . Bachelor’s thesis in PDF format
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Appendix B
Glossary

API . Application Programming Interface
ASCII . American Standart Code for Information Interchange
ASU CAS . Astronomical Institute of the Czech Academy of Sciences
CCD . Charge-Coupled Device
CNN . Convolutional Neural Network
CPU . Central Processing Unit
CUDA . Compute Unified Device Architecture
FITS . Flexible Image Transport System
GPU . Graphics Processing Unit
HDF5 . Hierarchical Data Format 5
HDU . Header/Data Unit
LAMOST . Large Sky Area Multi-Object Fibre Spectroscopic Telescope
PCA . Principal Component Analysis
PDF . Portable Document Format
RAM . Random-Access Memory
ReLU . Rectified Linear Unit
RGB . Red Green Blue Color Model
SMOTE . Synthetic Minority Over-sampling Technique
SSAP . Simple Spectral Access Protocol
t-SNE . t-Distributed Stochastic Neighbor Embedding
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