ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta jaderná a fyzikálně inženýrská
  • katedra matematiky
  • Bakalářské práce - 14101
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta jaderná a fyzikálně inženýrská
  • katedra matematiky
  • Bakalářské práce - 14101
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamika křivek v rovině a prostoru a její aplikace

Curve dynamics in plane and space and its applications

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Petr Filip
Vedoucí práce
Beneš Michal
Oponent práce
Minarčík Jiří
Studijní obor
Matematická informatika
Studijní program
Matematické inženýrství
Instituce přidělující hodnost
katedra matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Cílem práce je prozkoumat problematiku diferenciálních rovnic popisujících pohyb křivek v rovině a prostoru. V úvodu je řešena rovnice difuze jako související problém. Dále jsou zavedeny potřebné definice a představeny teoretické výsledky týkající se vlastností řešení pohybu podle křivosti. V textu jsou dále popsány různé druhy pohybu, přístupy k numerickému výpočtu a příklady aplikací. V poslední části je parametrickou metodou numericky řešena úloha normálového pohybu podle křivosti. V příkladech je využita tangenciální redistribuce pro větší numerickou stabilitu.
 
The aim of this theses is to investigate the problem of differential equations describing the motion of curves in plane and space. In the introduction, the difusion equation is solved as a related problem. In the following the necessary definitions and theoretical results concerning the properties of the solution of the motion by curvature are presented. Different types of motion, approaches to numerical computation and examples of applications are also described. In the last section, the problem of normal motion of curves by the curvature is numerically solved by a parametric method. Tangential redistribution is used in the examples for greater numerical stability.
 
URI
http://hdl.handle.net/10467/113348
Zobrazit/otevřít
PLNY_TEXT (2.488Mb)
POSUDEK (283.6Kb)
POSUDEK (161.3Kb)
Kolekce
  • Bakalářské práce - 14101 [312]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV