Show simple item record

Use of Fat Tails, Scaling and Stable Laws in Financial Markets

dc.contributor.advisorJizba Petr
dc.contributor.authorTabachová Zlata
dc.date.accessioned2018-05-11T10:02:14Z
dc.date.available2018-05-11T10:02:14Z
dc.date.issued2018-02-02
dc.identifierKOS-695600306905
dc.identifier.urihttp://hdl.handle.net/10467/76003
dc.description.abstractFinanční trhy jsou specifickým příkladem komplexních dynamických systémů. Mezi jejich typické vlastnosti patří, sobě-podobné chování, cyklická opakování nebo, že jsou zaznamenávány ve formě časových řad. Cílem analýzy těchto řad je určit budoucí cenu daných finančních instrumentů. Za tímto účelem zkoumáme časově závislou volatilitu, která určuje v jaké míře je trh riskantní. Ekonofyzika studuje finanční trhy metodami známými z fyziky. Roli volatility v ní hraje tzv. inverzní teplota, užívaná především ve statistické fyzice. V této práci se zabýváme studiem tříd distribucí, které by mohly vystihnout rozdělení těžko předvídatelných přírůstků cen. Typickými vlastnostmi těchto distribucí jsou nekonečné druhé momenty. Graficky jsou tato rozdělení rozpoznatelná díky ostrým vrcholům a pomalu klesajícím ramenům. Dalším zajímavým atributem časových řad je jejich škálová invariance. Toto je klasická vlastnost fraktálů, která nabádá k multifráktální analýze finančních trhů.cze
dc.description.abstractFinancial markets are complicated complex dynamical systems. Some of their distinguishable features are self-similarity, appearance of cycles, and also they are recorded in time series. When analyzing markets, the main aim is to predict the value of an asset. To characterize an approximate future price we study time-dependent volatility. Volatility can tell how risky an asset is. Econophysics apply tools from physics to analyze and study financial markets. In statistical physics volatility is known as the inverse temperature. In this thesis we study classes of distributions in order to trace the most suitable one for price increments distributions. Typically they are with infinite second moment, i.e. distributions with sharp peak and fat tails. Scale invariance is an another feature of financial time series. Therefore, it is reasonable to study them with multifractal analysis.eng
dc.language.isoENG
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html.eng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html.cze
dc.subjectFinanční trhy,Wienerův proces,třídy distribucí,multifraktální analýza,ARCHcze
dc.subjectFinancial markets,Wiener process,classes of distributions,multifractal analysis,ARCHeng
dc.titleAplikace těžkých ramen, škálování a stabilních zákonů ve finančních trzíchcze
dc.titleUse of Fat Tails, Scaling and Stable Laws in Financial Marketseng
dc.typeBAKALÁŘSKÁ PRÁCEcze
dc.typeBACHELOR THESISeng
dc.date.accepted2018-02-07
dc.contributor.refereeSailer Franz-Xaver
theses.degree.disciplineMatematické inženýrstvícze
theses.degree.grantorkatedra fyzikycze
theses.degree.programmeAplikace přírodních vědcze


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record