Show simple item record

Influence of Class Imbalance on Active Learning of Sleep EEG Classifier

dc.contributor.advisorMacaš Martin
dc.contributor.authorGrimová Nela
dc.date.accessioned2017-06-07T13:22:33Z
dc.date.available2017-06-07T13:22:33Z
dc.date.issued2017-05-25
dc.identifierKOS-695599638505
dc.identifier.urihttp://hdl.handle.net/10467/68620
dc.description.abstractTato diplomová práce se zabývá aktivním učením pro klasifikaci spánkových stavů na EEG datech. Jelikož spánková data jsou obecně nevyvážená, nejdříve sledujeme, jak nevyváženost na syntetických datech ovlivňuje aktivní učení využívající strategii nejistoty a jejích variant, které zohledňují rozmístění instancí v prostoru. Je navrhnuto několik algoritmů, z nichž jeden ušetřil více než 80 % instancí na čtyřech z pěti datasetů. Toto ušetření je významné vzhledem k tomu, že spánková data jsou anotována specialistou, který v současné době musí ke všem instancím přiřadit jejich třídu. V neposlední řadě jsou v této práci navrhnuta vyhodnocovací kritéria pro srovnání metod aktivního učení či pro zjištění, zda je navržená metoda aktivního učení lepší než náhodný výběr instancí.cze
dc.description.abstractThis master thesis deals with active learning used for the classification of sleep stages on EEG data. Since sleep data are in general imbalanced, we first focus on how class imbalance of synthetic data influences active learning utilizing the uncertainty sampling strategy and its density-weighted variants. Several algorithms have been proposed, one of them saves more than 80 % of instances on four out of five datasets. These savings are significant with regard to the fact that sleep data are annotated by a specialist who must currently go through all instances and classify them. Last but not least, evaluation criteria are proposed in this thesis for the comparison of active learning methods or to verify if a suggested method is better than random sampling.eng
dc.language.isoENG
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html.eng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html.cze
dc.subjectaktivní učení; strategie nejistoty; EEG; spánkové EEG; vyhodnocovací kritériacze
dc.subjectactive learning; uncertainty sampling strategy; EEG; sleep EEG; evaluation criteriactive learning; uncertainty sampling strategy; EEG; sleep EEG; evaluation criteriaeng
dc.titleVliv nevyváženosti tříd na aktivní učení klasifikátoru spánkového EEGcze
dc.titleInfluence of Class Imbalance on Active Learning of Sleep EEG Classifiereng
dc.typeMAGISTERSKÁ PRÁCEcze
dc.typeMASTER'S THESISeng
dc.date.accepted2017-06-13
dc.contributor.refereeSaifutdinova Elizaveta
theses.degree.disciplineBiomedicínská informatikacze
theses.degree.grantorkatedra kybernetikycze
theses.degree.programmeBiomedicínské inženýrství a informatikacze


Files in this item





This item appears in the following Collection(s)

Show simple item record