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discussions about EEG data, Mgr. Kyriaki-Maria Saiti for her valuable comments and
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Abstrakt

Tato diplomová práce se zabývá aktivńım učeńım pro klasifikaci spánkových stav̊u
na EEG datech. Jelikož spánková data jsou obecně nevyvážená, nejdř́ıve sledujeme,
jak nevyváženost na syntetických datech ovlivňuje aktivńı učeńı využ́ıvaj́ıćı strategii
nejistoty a jej́ıch variant, které zohledňuj́ı rozmı́stěńı instanćı v prostoru. Je navrhnuto
několik algoritmů, z nichž jeden ušetřil v́ıce než 80 % instanćı na čtyřech z pěti dataset̊u.
Toto ušetřeńı je významné vzhledem k tomu, že spánková data jsou anotována specialistou,
který v současné době muśı ke všem instanćım přǐradit jejich tř́ıdu. V neposledńı řadě
jsou v této práci navrhnuta vyhodnocovaćı kritéria pro srovnáńı metod aktivńıho učeńı
či pro zjǐstěńı, zda je navržená metoda aktivńıho učeńı lepš́ı než náhodný výběr instanćı.

Kĺıčová slova: aktivńı učeńı; strategie nejistoty; EEG; spánkové EEG; vyhodnoćı
kritéria

Abstract

This master thesis deals with active learning used for the classification of sleep stages
on EEG data. Since sleep data are in general imbalanced, we first focus on how class
imbalance of synthetic data influences active learning utilizing the uncertainty sampling
strategy and its density-weighted variants. Several algorithms have been proposed, one
of them saves more than 80 % of instances on four out of five datasets. These savings
are significant with regard to the fact that sleep data are annotated by a specialist
who must currently go through all instances and classify them. Last but not least,
evaluation criteria are proposed in this thesis for the comparison of active learning
methods or to verify if a suggested method is better than random sampling.

Keywords: active learning; uncertainty sampling strategy; EEG; sleep EEG; evaluation
criteria
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1 Introduction

1.1 Motivation

In reality, when it comes to a lot of pattern classification problems of the real world,
data instances are scarce and difficult to come by. Moreover, a situation is even worse
when we are able to obtain some data but assigning them to a proper class is expensive
or time-consuming. This includes applications, where a large amount of data is available
but to divide them into categories is difficult (e.g. assigning of topics to documents [1]),
or when a human annotator is needed.

The classification of sleep stages is a traditional task. A specialist studies a patient’s
record of biophysical changes during the sleep (it is a record of EEG, EMG, EOM and
ECG activity in most cases) and determines in which sleep stage the patient was. It
is clear that this approach is tedious so there are tendencies to use machine learning
techniques and automatize the process.

The main idea of active learning is to select a few of the most informative instances
and use them in order to train a classifier. This process is based on asking queries about
a class of the selected instance, and then the answer is provided by an oracle (e.g. by
the specialist) [2]. Three strategies of how a query can be created will be discussed in
Section 2.2.

It is assumed that as a result that a smaller amount of observations to learn a
classifier will be needed and thus time and cost of assigning instances to their classes
will be saved.

The aim of this thesis is to take the advantage of active learning methods and use
them for classification of sleep stages, so the specialist will not have to annotate the
whole record of sleep but only a few instances with the same achieved level of accuracy.

Since stages of sleep are largely imbalanced, this fact hinders the traditional machine
learning approaches, it is necessary to first figure out how a class imbalance influences
active learning process.

1.2 Objectives

The first aim of this thesis is to conduct a survey about the current situation in active
learning and also in addressing the class imbalance and as well to figure out which
state-of-the-art methods are utilized.

Active learning methods are in most cases compared by the visual comparison of
their values of a metric depending on the number of instances which were used for
learning, so the other goal of the thesis is to propose criteria which can be utilized for
an evaluation of active learning.

The next goal is to carry out experiments on synthetic datasets with different levels
of class imbalance, evaluate them and observe how the class imbalance influences the
performance of active learning.
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The final step is to use the acquired knowledge for the application of active learning for
detection of sleep stages in EEG signals, to implement chosen methods and to evaluate
them.

1.3 Structure of the Thesis

We will provide the definition of active learning and mention all aspects connected to
active learning in Section 2. Active learning is divided into three categories, according
to which way the data used for learning are acquired. Then, we will mention strategies
for selecting the most informative instances. We will especially deal with uncertainty
sampling and density-weighted strategies, so these strategies will be discussed more in
the last part of the second section, together with the initialization and the termination
of active learning.

In Section 3, several metrics, which are used for evaluation of an algorithm performance,
will be briefly introduced. Then it will be focused on evaluation of active learning, which
is usually done visually. Several evaluation criteria that are suitable exactly for active
learning will be proposed.

We deal with class imbalance in Section 4. The definition, what the class imbalance
is, and what are the methods that are used for handling it, will be proposed. Then the
connection between active learning and learning on skewed datasets will be described.
We will perform experiments on synthetic datasets with different class imbalance and
discuss them.

In Section 5, a brief introduction to sleep EEG will be provided and we will use
results achieved in Section 4 for the utilization of active learning for detection of sleep
stages. We will perform experiments on real data and discuss acquired results.

Results of the thesis will be summarized in the Chapter 6, they will be discussed
and problems, on which it would be necessary to focus on in the future work, will be
detected.

1.4 Types of Learning

Three categories of machine learning are often distinguished: supervised, unsupervised
and reinforcement learning [3]. Let us provide a brief description of each category
and also mention semi-supervised learning, which is a combination of supervised and
unsupervised learning.

1.4.1 Supervised Learning

In supervised learning, we are given an instance (observation) space X, a state (class)
space Y and a probability density PXY (x, y) which describes the joint probability that
the instance x is observed and belongs to the class y. The goal of the task is to find a
classifier f : X → Y which for every observation x ∈ X assigns its state y ∈ Y . It is
expected that classifier f does not estimate the correct state y for every observation x.
Hence let L : X ×X → R be a loss function which represents an amount of loss of the

2



estimated state due to the real state. Let yR be the real state and yE the estimated
state, then L(yR, yE) returns the corresponding amount of loss.

When the number of classes is finite, we call this task classification [3]. Let us
consider a typical classification task. We are given a set SSL of n pairs, each pair
consists on the observation xi and its class yi: SSL = {(x1, y1), ..., (xn, yn)}, xi ∈ X,
yi ∈ Y . We would like to find the classifier f such that its expected value of loss R(f)
(also called a risk of the classifier [4]) is as small as possible:

f = arg min
f :X→Y

R(f) = arg min
∑
x∈X

∑
y∈Y

L(x, f(x))PXY (x, y) (1)

With the zero-one loss function L01(y, f(x)), i.e. with the function which returns
0, if the estimated and the real state is equal, or 1, if the estimated and the real state
differ, the risk becomes the classification error e:

e =
∑
x∈X

∑
y∈Y

L01(x, f(x))PXY (x, y) (2)

1.4.2 Unsupervised Learning

Unlike in supervised learning, there is no knowledge about classes in unsupervised
learning, only the observation space X is known. As an input, a program receives a set
SUL which contains n instances from X, SUL = {x1, ..., xn}.

The goal of the task differs according to the application. It covers finding common
features of data in SUL and cluster these instances into k sets (e.g. k-means clustering),
the estimation of the probability density PX or the dimensionality reduction [3].

1.4.3 Semi-supervised Learning

Semi-supervised learning is a combination of supervised and unsupervised learning. Let
us assume an observation space X, a class space Y and a probability density PXY (x, y).
Semi-supervised learning deals with both unassigned and assigned observations of the
class.

Let SSSL be the input set of instances which is the union of sets SL and SU , i. e.
SSSL = SL ∪ SU . SL has the same meaning as the set SSL in supervised learning, thus
it is a set of m pairs of observations and their classes: SL = {(x1, y1), ..., (xm, ym)}.
On the other hand, SU is similar to set SUL in unsupervised learning and contains
n instances from X without the assigned class: SUL = {xm+1, ..., xn+m}. Let us call
instances from set SL labeled instances and instances from set SU unlabeled instances.
Denote that it holds m� n.

3



Labeled instances provide a prior knowledge about a problem and constrain the input
space. A common example of semi-supervised learning is the semi-supervised variant
of EM algorithm [5].

1.4.4 Reinforcement Learning

Reinforcement learning is often used in agent-based systems. Reinforcement learning
is similar to supervised learning, but there is no prior knowledge about the set SSL. A
set of agent’s actions A and a set of states T are given. An agent moves from the state
ti to the state tj , ti, tj ∈ T by taking actions and exploring an environment. Each made
action gives him a reward r. Acquired knowledge helps the agent to higher ability of
reasoning. [6].

1.4.5 Determination of Active Learning

Active learning can be considered as a part of semi-supervised learning (Section
1.4.3), although the term active learning also appears in literature about reinforcement
learning [6], where it is used for the algorithm in which an agent actively searches
through its environment. Note that active learning is also one of social psychology
fields [7], but it has nothing in common with our topic.

4



2 Active Learning

A description of active learning will be given in this section. We will provide a brief
motivation to answer the question why it should be given more attention in the field
of active learning and what are its advantages.

2.1 Definition

Let X be the observation space and Y the finite state space. We are given a set of
unlabeled instances SU and a set of labeled instances SL, which have the same meaning,
as it is proposed in Section 1.4.3 and it holds that |SU | >> |SL|, the classifier f : X → Y
and the oracle O for annotating selected instances.

The most informative observation x∗ ∈ SU is chosen in each step of an active
learning algorithm according to the performance of the classifier f trained on labeled

instances. The methods of creating queries will be discussed later. Let
O→: X →

X×Y be the mapping which denotes that the oracle assigns a label to the observation.

Selected instances are labeled by the oracle, i.e. x∗
O→ (x∗, y), y ∈ Y , and (x∗, y) is

added to the set SL.
It is required to answer several questions before implementing active learning.

Firstly, as we have mentioned before, it can be difficult to obtain a set of unlabeled
instances SU . Processes of acquiring unlabeled instances will be described in the next
section.

It is also needed to decide how the process will be initialized (i.e. how the initial set
SL will be created) and terminated. It will be mentioned in Section 2.4.3 and Section
2.4.4.

2.2 Unlabeled Instances Sampling

Sampling of unlabeled instances is divided in up to three categories: pool-based
sampling, stream-based sampling and membership query synthesis [2,8]. Let us remark
that pool-based and stream-based sampling can be also merged to one category called
selective sampling, because of their similar features [1].

2.2.1 Pool-based Sampling

Regarding pool-based sampling many observations can be gathered at once. This
amount of instances is called a pool and has the same meaning as the set SU which is
defined in Section 1.4.3.

The main advantage of this approach is that we are allowed to compute a chosen
informativeness measurement on all unlabeled instances and select the most informative
one.

Instances are usually chosen sequentially, i.e. one instance is labeled at each
iteration and the set of labeled instances SL is used to retrain the classifier f . However,
this process often appears to be expensive and inefficient in applications where training
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the classifier f consumes a great amount of time [9]. Therefore, active learning algorithms
were invented in order to allow collecting more instances within one iteration. This
approach is called batch-mode active learning [10].

Active learning using pool-based sampling was exploited in many applications, e.g.
in the text classification [11], in the natural language processing [12] or in the artifacts
detection of EEG signals [13].

2.2.2 Stream-based Sampling

Using pool-based sampling is often limited to cases when only a limited memory to
store observations is available or when a data source, from which observations are
gathered, is changing [2].

An algorithm samples an instance from its distribution PU and decides if the
instance will be accepted as query or rejected. Stream-based sampling is often called
sequential active learning because instances are gathered from data source one by
one [2].

Stream-based sampling is also used when it is not necessary to keep a whole set SU
and the easier and cheaper way is sampling observations right from their distribution.

Note that the distribution PU does not need to be known but it is recommended that
samples should come from non-uniform and real distributions [2]. If the distribution
is uniform then stream-based sampling behaves like query synthesis which will be
mentioned in the next section [8].

2.2.3 Query Synthesis

Only real instances are selected as queries in stream-based and pool-based sampling
scenarios. Queries are generated by a learner in the query synthesis and are able to
look like any instance from the observation space [14].

A learner can construct a query which is unrecognizable to human oracle, as it
is often recommended to use query synthesis only for finite problems domains [2, 14].
Nevertheless, the efficient spectral algorithm has also been introduced, and it expands
the possibilities to use query synthesis in more complicated settings as well [15].

2.3 Query Strategies

When active learning is adopted, one of the most important question to answer is
how the most informative instances will be selected. A large number of them exist in
literature [2], so the most common strategies will be mentioned in the following section.
Note that x∗A refers to the best query in accordance with the query strategy framework
A.
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2.3.1 Uncertainty Sampling

The uncertainty sampling is the most popular and the simplest strategy [2]. Uncertainty
sampling was proposed by Lewis et al. [16]. It is suitable mostly for probabilistic models,
but it might also be applied to non-probabilistic classifiers [2].

In this approach, the instance, whose label the classifier is least certain of, is queried.
Three variants of uncertainty sampling are mentioned: margin uncertainty sampling,
entropy sampling and the least confidence strategy [2].

Entropy sampling is often used because of its simplicity [17]. The instance with the
biggest entropy is queried:

x∗E = arg max
x

−
|Y |∑
i=1

PY |X(yi|x) logPY |X(yi|x). (3)

For problems with more than two classes, it is suitable to use least confidence
strategy where the instance with the smallest posterior probability of the most probable
label is sampled [18]:

x∗LC = arg min
x

(arg max
y

PY |X(y|x)). (4)

This method takes into account only information about the most probable class,
as a result margin uncertainty sampling was proposed by Scheffer et al. [19]. The
idea behind this strategy is that the algorithm selects the instance with the smallest
difference of the highest and the second highest posterior probability.

x∗MS = arg min
x

PY |X(ȳ1|x)− PY |X(ȳ2|x), (5)

where ȳ1 is the most probable and ȳ2 the second most probable label of the instance
x.

2.3.2 Query by Committee

Query by committee framework have been introduced for the first time by Seung et
al. [20]. A committee of c classifiers C = {θ1, . . . , θc}, which represents consistent
hypotheses with labeled instances, are allowed to vote on the labellings of unlabeled
observations. The instance, on which classifiers disagree the most, is considered as the
most informative and is chosen as the query.

It is often supposed that embracing query by committee scenario results in a proper
reduction of the version space [2]. The algorithm must to be able to create different
hypotheses and compute some measure of disagreement among them. There have been
several methods for measuring the disagreement proposed, e.g. the vote entropy [21]
which is defined as following:

x∗V E = arg max
x

|Y |∑
i=1

V (yi)

|C|
log

V (yi)

|C|
, (6)
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where V (yi) is the number of votes that each label yi receives.

Other methods include Kullback-Leibler divergence [1,11] or F-complement, where
F-measures between committee members are compared [1, 22].

2.3.3 Expected Model Change

The basic idea behind expected model change is that the learner should query the
instance whose labeling would cause the greatest change of the current model.

Settles et al. [23] have introduced a strategy called expected gradient length. This
approach is suited for learning using gradient-based methods. The instance, whose
addition to the labeled set would cause the greatest change of the gradient, is queried.
Expected gradient length approach has been applied to conditional random fields
models (CRFs) [12], a similar strategy for CRFs has also been introduced by Vezhnevets
et al. [24].

Another algorithm called expected model change maximization was proposed by
Cai et al. [25], when it was used for linear and nonlinear regression.

2.3.4 Density-Weighted Strategy

The problems of using uncertainty sampling and query by committee frameworks
cover a situation when the instance, about which the classifier is most uncertain (or
with the biggest disagreement among committee members), is queried, but it does not
sufficiently represent other instances [2]. As a result, Settles et al. [12] proposed the
information density framework.

Let I(x) be the informativeness of the instance x given e.g. by uncertainty sampling
or query by committee, s(xi, xj) be the function describing the similarity between xi
and xj and β ∈ R be the weight of the similarity term. Then the algorithm queries an
instance for which it holds:

x∗ID = arg max
x

I(x)×

(
1

|SU |

|SU |∑
j=1

s(x, xj)

)β
(7)

2.3.5 Expected Error Reduction

This approach consists of computing error estimates of using SL ∪ (x, y), x ∈ SU
on remaining unlabeled instances i.e. SU \ {x} and querying the instance x∗ whose
addition to the set SL will result in the smallest future error [2].

Since true labels of unlabeled instances are not known, they are estimated by using
the current classifier. The label of the instance x∗ is also unknown, so its expected error
is computed as the average over errors computed for all possible labeling weighted by
the posterior probability given by the classifier [26].
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2.3.6 Variance Reduction

Another approach of selecting the most informative instance consists of variance
reduction of the expected error which can be easier and less expensive than reducing
the expected error as a whole [2].

Settles et al. has introduced a selection strategy for sequence models based on
Fisher information framework [18]. Let ISU

(θ) be the Fisher information matrix of the
set of unlabeled instances and Ix(θ) be the Fisher information matrix of some instance
x, both above the model parameters θ. Then the most informative instance derives
from:

x∗FI = arg min
x

tr(ISU
(θ)Ix(θ)−1), (8)

where tr(A) denotes the trace of matrix A.

2.4 Algorithm

We will describe all the parts of active learning process in this section. Firstly, a
description of a general version of active learning using pool-based sampling, which
will be used further in this text, will be provided (see Section 2.4.1). Secondly, two new
active learning strategies will be introduced (see Section 2.4.2).

2.4.1 General Version

The following pseudocode describes a general version of active learning which has a
set of training data TR, the classifier f and variables, which depend on selected query
strategy, as inputs.

Algorithm 1 Pool-based active learning

Input: set of training data TR, classifier f , variables var
Output: set of labeled instances SL, trained classifier fT

[SA, SU ] = initialize(TR)
SL = get label(SA)
repeat
fT = train classifier(SL, f)
x∗ = query strategy(SU , fT , var)
(x∗, y) = get label(x∗)
SU = SU \ {x∗}
SL = SL ∪ (x∗, y)
f = fT

until terminal condition = true or SU = ∅

The function initialize divides the set of training data TR into the small set SA and
the larger set of unlabeled instances SU . Then the oracle is asked for labels of instances
in the set SA by using the function get label. Note that the input of this function can be
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a single instance or a set of observations. Until the terminal condition is reached (this
will be discussed more in Section 2.4.4), the algorithm loops: the classifier f is trained
on the labeled set SL, then data from the set SU are classified, the most informative
instance x∗ according to some query strategy is chosen, the function get label returns
its label y and x∗ is removed from the set SU , while the pair (x∗, y) is added to the set
SL.

2.4.2 Strategies

Strategies that will be used in this thesis, will be described in this section. First of all,
we will remind the margin uncertainty sampling strategy, we have already mentioned
in Section 2.3.1, and the simplest version of the density-weighted strategy from Section
2.3.4. Furthermore, strategies called UMDN and UMDL will be proposed.

All strategies in the Algorithm 1 are called by the function query strategy.

Algorithm 2 Margin Uncertainty Sampling Strategy

Input: set of unlabeled data SU , trained classifier fT
Output: instance x∗

min =∞
for all instance x ∈ SU do
aposterior prob = get aposterior prob(x, fT )
subtract the biggest and the second biggest a posterior probability, save result into
the variable c
if c ≤ min then
min = c
x∗ = x

end if
end for

The most important part of this algorithm is calling the function get aposterior prob
which returns the conditional probabilities of all classes given x. The sum of those values
is equal to one.

The simplest density-weighted method is very similar to uncertainty sampling, the
certainty c of an observation is multiplied by the mean distance to all other unlabeled
instances. It is given by the value of β how much the certainty is affected by the
distance. Let us denote this strategy as DWD*, where * is the value of β.

Density-weighted strategies called UMDN and UMDL will be introduced now. Let
us describe UMDN strategy first (see Algorithm 3). Assume that we are able to get
l least certain instances by calling the function get l least certain. The least certain
instances are obtained in the first part of the algorithm, then for each of these instances
the nearest labeled observation is found. If the distance between them is larger than the
maximal already received distance, the maximal distance is updated and the respective
instance is queried. Similarly, as we have done before, let us denote this strategy as
UMDN*, where * is the number l, in order to distinguish these strategies with different
parameters.
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In UMDL strategy (see Algorithm 4), |Y | centroids of labeled instances are computed,
with each centroid being the mean value of all labeled instances in the particular class.
Certainty c and distance d from the nearest centroid are computed for each instance.
Instance, whose product of c and d is the smallest, is queried.

Algorithm 3 UMDN

Input: set of unlabeled data SU , set of labeled data SL, trained classifier fT , number
l

Output: instance x∗

least certain = get l least certain(SU , fT , l)
max = −∞
for all instance x ∈ least certain do
d = get distance from the nearest neighbor(SL, x)
if d ≥ max then
max = d
x∗ = x

end if
end for

Algorithm 4 UMDL

Input: set of unlabeled data SU , set of labeled data SL, trained classifier fT
Output: instance x∗

centroids = get centroids(SL)
min =∞
for all instance x ∈ SU do
aposterior prob = get aposterior prob(x, fT )
subtract the biggest and the second biggest a posterior probability, save result into
the variable c
d = get min distance from centroid(x, centroids)
cd = c · d
if cd ≤ min then
min = cd
x∗ = x

end if
end for

2.4.3 Initialization

As we are aware of, the problem of how active learning process should be initialized,
i.e. how to create the initial set of labeled instances, is not often followed up in the
literature. Two different approaches exist: a random and an informative selection.

In the random selection, as the name suggests, instances to query are chosen
arbitrarily. This approach is adopted e.g. from Ngai et al. [22].

Attenberg et al. [27] mentioned that researchers of active learning make one or two
assumptions. First of them consists of presuming that the initial random selection
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will provide a sufficiently accurate model to continue with active learning, the second
reflects on the cold start problem – this means it is expected that the error of the
classifier is high during several iterations at the beginning, whereas the set of labeled
instances is small.

Let us demonstrate the cold start problem caused by the randomized initialization
on the small example. Suppose two-dimensional data which we would like to classify
into three classes. The margin uncertainty sampling strategy will be used (see Section
2.3.1) and a linear classifier [3]. The active learning process is initialized by the labeling
of two randomly chosen instances. The initial situation is depicted in Figure 1.

Figure 1: Example of the three-class problem

The labeled set SL contains two instances belonging to two classes, while the third
class is not represented. The initialization and first four steps of active learning are
shown in Figures 2a–2e, the corresponding error on training data is depicted in Figure
2f.

The cold start problem covers the initial situation and another two steps of active
learning (see Figures 2a–2c). As a result, the set of labeled instances SL does not
contain any observation from the third class, as all data from this class are classified
incorrectly, so the overall error is high. If the instance from the third class is added to
SL (Figure 2d), the performance of the classifier is improved. It is remarkable that this
task is very simple and the third class was detected early after three iterations, but this
problem can persist for a longer time in real world applications, when the task is more
challenging or the environment is more complex.

Another technique for initialization is the informative selection of labeled instances.
It involves a conscious choice of typical observations by a human annotator or some
preprocessing step like e.g. the k-means clustering [3], where the observations closest
to the acquired centroids are annotated [28], or the k-menoids algorithm which is based
on the similar principle [29].
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Figure 2: Initialization, four steps of the algorithm and the corresponding error, first
five steps of active learning are depicted in Figures 2a–2e, the corresponding error to
these situations is shown in Figure 2f

However, there are limitations of using this approach. Since this thesis deals with
learning on imbalanced datasets, let us describe one of the problems caused by the
informative selection on the following example. Suppose that in two-class problem,
data are generated from two two-dimensional Gaussian distributions (µ1 = [0, 2], σ1 =
[1, 1.5; 1.5, 3], µ2 = [2, 3], σ2 = [1, 1.5; 1.5, 3]). Assume at first that number of instances
in both classes is equal, with data being depicted in Figure 3a. K-means algorithm
with k = 2 was applied to these data and instances nearest to centroids were labeled.
The result is shown in Figure 3b.

(a) Original dataset with class ratio 1:1 (b) K-means initialization with k = 2

Figure 3: Initialization of active learning using the k-means algorithm, the class ratio
is 1:1
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Now, suppose that there are twice less instances in the class 1 than in the second
class. If we apply k-means with k = 2 as we did in the previous example, all selected
instances would belong to the second class (see in Figure 4b). When we increase the
number of centroids twice, k = 4, then the set of labeled observations contains data
from both classes (Figure 4c). The original dataset is shown in Figure 4a.

(a) Original dataset with the class ratio 1:2 (b) K-means initialization with k = 2

(c) K-means initialization with k = 4

Figure 4: Initialization of active learning using the k-means algorithm, the ratio of the
first class to the second is 1:2

We get similar results if we use the k-means algorithm on instances where the ratio
of the first class to the second one is 1:20. Given labeled instances for different k are
shown in Figure 5. The original dataset is depicted in Figure 5a.

It is clear that with larger imbalance of classes it is necessary to search for more
centroids to initialize active learning in the right way. We can expect that using some
preclustering algorithm also causes the cold start problem in more difficult environments
or when classes are very imbalanced.

Note the initialization, in which the set of labeled instances SL contains n randomly
picked instances of each class will be used in our setting.
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(a) Original dataset with class ratio 1:20 (b) K-means initialization with k = 2

(c) K-means initialization with k = 4 (d) K-means initialization with k = 6

Figure 5: Initialization of active learning using the k-means algorithm, the class ratio
is 1:20.

2.4.4 Termination

Several conditions, which are used for termination of active learning, will be mentioned
in this section. These conditions are:

• The number of iterations, which was determined in advance, is reached.

• Required value of a metric on testing data is reached. It is assumed that the
chosen metric is computed in every iteration of the algorithm.

• Given percentage of unlabeled instances has bigger certainty value than some
threshold. Note that this terminal condition can be used only if uncertainty
sampling strategy or its variants are used.

• All instances in the margin are exhausted.

The metric, which we mention in the second bullet point, can be the given level of
accuracy, error, F-measure, g-mean etc. These metrics will be discussed in Section 3.1.
The terminal condition in the fourth option is also called the early-stopping criterion
and it is used in active learning which exploits the SVM classifier for classification.
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The main idea of this approach is that when all instances that lie along the margin are
queried, the active learning process is terminated [30].

The third option will be discussed and shown on the example. Banknote dataset
from UCI Machine Learning Repository [31] will be used. It is the two-classes dataset
of 1, 372 instances with four features, which was split into two sets of approximately
the same size – training and testing set. The Parzen window estimator [32] is used as
the classifier, margin uncertainty sampling is used as the query strategy and there are
two instances of each class in the initial set of labeled instanced SL.

The error on testing data is depicted in Figure 6a. Assume that it is sufficient for us
to be certain on the label of some instance at least on 75 %. We can see the percentage
of unlabeled instances which certainty is bigger than this threshold in Figure 6b.
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(a) Error on testing data versus the number
of instances which are used for training
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(b) Percentage of unlabeled instances,
about which the classifier is certain at least
of 75 %, versus number of instances for
training

Figure 6: Error on testing data of Banknote dataset and the percentage of unlabeled
instances whose class certainty is bigger than 75 %

The classifier is confident with at least 75% confidence about any label after forty-six
iterations. There is a smaller decrease between fifty-five and fifty-eight iterations.
Active learning would be stopped after forty-six iterations with the threshold of certainty
set to 0.75 and threshold of percentage of instances set to 1. Note that algorithm would
be stopped sooner if we set the mean error on classes to be at most 0.008 as the terminal
condition. The process would be terminated after twenty iterations in that case.
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3 Evaluation of Active Learning

The current situation of the active learning evaluation and the comparison of different
active learning methods will be mentioned in this section. First, we will provide a
introduction to several metrics that are commonly used for evaluation of standard
machine learning methods.

3.1 Preliminaries

It is necessary to adopt some evaluation techniques to determine how correct is the
trained model’s performance. Therefore, dataset is often divided into at least two
parts – to training data, on which the classifier will learn, and to testing data. The
partition of the dataset can be done at random, but it is highly recommended to
use stratified 10-fold cross validation in real-world problems to reduce the influence of
randomness [33].

3.1.1 Confusion Matrix

Several metrics for the classifier’s evaluation on testing data will be discussed in this
section. All of them are based on the confusion matrix whose rows correspond to actual
classes of the observation and columns to predicted states.

Consider the simplest case, i.e. the observation is either positive (belongs to the
class y+) or negative (belongs to the class y−). If the observation’s actual and predicted
classes are both positive (or negative) then the observation is called true positive
(negative, respectively). If an observation’s actual class is positive and its predicted
class is negative, then it is notated as false positive, and contrariwise, if the actual
class is negative and the predicted class is positive, then the observation is called false
negative (see Table 1). The example, in which the classifier classified 150 instances
correctly and four observations incorrectly, is shown in Table 2.

Table 1: Visualization of the simplest confusion matrix

Predicted y+ Predicted y−
Actual y+ TP FN

Actual y− FP TN

Table 2: Example of the confusion matrix

Predicted y+ Predicted y−
Actual y+ 74 3

Actual y− 1 76

As we have mentioned before, this example is only the special case of the confusion
matrix. In general, the confusion matrix is also defined for multiclass problems. Consider
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a problem where observations are classified to n classes, Y = y1, . . . , yn. Let us denote
the number of observations whose actual class is y1 and predicted class is yn as N11,
the number of observations whose actual class is y1 and predicted class is y2 as N12,
etc. The corresponding confusion matrix is shown in the next table:

Table 3: The confusion matrix for a multiclass problem

Predicted y1 . . . Predicted yj . . . Predicted yn
Actual y1 N11 . . . N1j . . . N1n

...
...

. . .
... . .

. ...
Actual yi Ni1 . . . Nij . . . Nin

...
... . .

. ...
. . .

...

Actual yn Nn1 . . . Nnj . . . Nnn

It is possible for the specific class yi to convert the confusion matrix from Table 3
to the two-classes case. Let us define TP i, FN i, FP i and TN i as follows:

TP i = Nii (9)

FN i =

n∑
j=1, i 6=j

Nij (10)

FP i =
n∑

j=1, i 6=j
Nji (11)

TN i =

n∑
j=1, i 6=j

n∑
k=1, i 6=j

Njk (12)

3.1.2 Metrics

Several metrics, which are used for the evaluation of classifiers, will be introduced in
this section. Note that all described metrics take values from < 0, 1 >, and they might
also be expressed as percentage.

Let us remind the binary case as we proposed in Section 3.1.1 i.e. the goal of the
task is to classify the observation as positive or negative, in order to adopt the confusion
matrix (Table 1). There are several well-known metrics used for this binary case: the
accuracy accb, the precision precb, the sensitivity sensb, the specificity specb, the miss
rate missb and the fall-out fallb of the classifier f [34]. Let us define them as:
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accb =
TP + TN

TP + TN + FP + FN
(13)

precb =
TP

TP + FP
(14)

sensb =
TP

TP + FN
(15)

specb =
TN

TN + FP
(16)

missb =
FN

FN + TP
(17)

fallb =
FP

FP + TN
(18)

values TP , TN , FP and FN are defined in Table 1.
The precision of the classifier f measures how precise is the assignment to the class

y+ [35]. It is defined as the proportion of correctly classified positive observations and
all positive classifications.

Since it is often inconvenient to manipulate with two metrics at the same time,
several approaches, which combine two metrics into one, have been introduced. One of
them is a geometric mean – g-mean which is in general defined as a square root of a
two metrics’ product [36]. He et al. [35] provided two definitions of g-mean:

gm1 =
√
sensb × specb (19)

gm2 =
√
sensb × precb (20)

Other, the more sophisticated metric than g-mean, is the F-measure which is defined
for any α ∈ R, α > 0 as follows:

Fα = (1 + α2)
precb × recb

(α2 × precb) + recb
, (21)

where recb is the recall, another notion for the sensitivity. α is commonly set to one,
then the F-measure is called F1-score [37].

We will generalize some of these metrics for a multi-class problem, i.e. a problem
where |Y | ≥ 2.

The accuracy of classifier f is defined as:

acc =

∑n
i=1 TP i∑n

i=1

∑n
j=1Nij

, (22)

where TPi is the number of correctly estimated instances by the classifier f and Nij
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corresponds to values in the confusion matrix given by the classifier f described in
Section 3.1.1. The same goes for TNi, FPi and FNi, discussed in metrics above.

Let us remind the error of the classifier e which was defined in Section 1.4.1. It
holds that the accuracy acc is the complement of the e:

e = 1− acc (23)

The precision preci, the sensitivity sensi, the specificity speci, the miss rate (also
called false negative rate) missi and the fall-out (also called false positive rate) falli
of the classifier f ’s prediction of the class yi are defined as:

preci =
TP i

TP i + FP i
(24)

sensi =
TP i

TP i + FN i
(25)

speci =
TN i

TN i + FP i
(26)

missi =
FN i

FN i + TP i
(27)

falli =
FP i

FP i + TN i
(28)

It is noticeable that the miss rate is complement of sensitivity and also specificity
and fall-out are complementary:

missi = 1− speci (29)

falli = 1− speci (30)

Let us define the mean precision on classes mprec and also the mean error on classes
me of the classifier as follows:

mprec =

∑n
i=1 preci
n

(31)

me =

∑n
i=1missi
n

(32)

It is also possible to compute F-measure for a multi-class problem. Micro-averaged
and macro-averaged F-measures are often used. [38].
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Let us define the micro-averaged F-measure MiFα as:

MiFα = (1 + α2)
p× r

(α2 × p) + r
(33)

p =

∑n
i=1 TPi∑n

i=1(TPi + FPi)
(34)

r =

∑n
i=1 TPi∑n

i=1(TPi + FNi)
(35)

Macro-averaged F-measure MaFα is defined as:

MaFα =
(1 + α2)

∑n
i=1

preci×reci
(α2×preci)+reci
n

(36)

Micro-averaged F-measure gives priority to the performance of a classifier to the
larger of classes and macro-average F-measure to the minority class [38].

3.2 Active Learning Evaluation

In this section we will mention how active learning methods are compared and we will
propose new criteria for evaluation of active learning.

3.2.1 Visual Comparison

As we mentioned before, active learning consists in the informative selection of one or
more instance to query in each iteration of the algorithm. It is necessary to determine,
if active learning will provide better results than if it had be done randomly. The
most frequently used technique for evaluation, comparison to random sampling, or
comparison of multiple active learning approaches is the visual comparison.

It typically consists of plotting a chosen metric as a function of the number of
labeled instances, i.e. the number of instances which were used for training of the
classifier. The metric is chosen according to the application, e.g. F-measure [1, 12],
Area Under Received Operating Characteristic Curve [23, 27], accuracy [13, 28, 39] or
the g-mean [40]. We will mostly use the error, the miss rate of individual classes and
the mean error of classes.

Due the fact that random sampling and also some active learning methods are
stochastic, it is necessary to run the process several times in order to get more reliable
results and use the average of the chosen metric through all runs of the algorithm for the
comparison [23]. Let us show it on the example. We can see the comparison of active
learning using the margin uncertainty strategy with random sampling launched on the
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Banknote dataset in Figure 7, where is shown the mean error of classes depending
on the number of labeled instances, results curve are achieved by averaging of 150
runs. We can see in Figure 7 that the active learning distinctly dominates over random
sampling in all expect the first few iterations. It should be noted that it is not always
straight-forward to make such clear conclusion about dominance of one algorithm.
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Figure 7: Mean error on classes on testing data of Banknote dataset of random sampling
and margin uncertainty sampling

3.2.2 Proposed Evaluation Criteria

Several criteria which can be embraced for evaluation of active learning and comparison
of methods will be proposed. Let us denote that, as in the visual comparison part, it is
necessary to compare an active learning method to random sampling in order to figure
out if active learning leads to better results than a random sequential choice of instances.

Reaching Threshold

This criterion is the simplest one of all suggested criteria. It consists in defining the
threshold (of the error, the mean error on classes, the accuracy, etc. on testing data)
and determining how many iterations algorithm needs to reach this threshold. Then,
all method are sort out in ascending order, the algorithm that has reached the threshold
first is the best.

Let us show this criterion on example. Consider that if three methods are compared,
the number of iterations is 10 and the corresponding error of all methods is shown in
Table 4. Let us assume that the threshold is set at 0.15. Method 1 reaches this threshold
after eight iterations, method 2 after three iterations and method 3 after two iterations.
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Table 4: Error of three methods in each iteration

Number of iterations
1 2 3 4 5 6 7 8 9 10

Method 1 0.84 0.32 0.40 0.28 0.27 0.21 0.21 0.15 0.12 0.15

Method 2 0.66 0.28 0.15 0.14 0.13 0.06 0.05 0.05 0.04 0.05

Method 3 0.41 0.12 0.12 0.31 0.28 0.27 0.26 0.19 0.18 0.14

This approach is straightforward, easy to implement and obviously reduces the
number of labeled instances which are needed in order to train the classifier. The
biggest disadvantage of this criterion lies in the choice of the threshold.

If active learning is compared to random sampling, we can interpret this criterion
as the question: ”How many instances to training would we save if we exploited active
learning?” The answer is the result of this criterion, when active learning is adopted
and subtracted from the number of training instances.

Rank Comparison

Rank of all methods according to the chosen metric is computed in each iteration,
i.e. if the mean error on classes is chosen as the metric, then the method with the
smallest mean error on classes has the rank 1, the method with the second smallest
mean error on classes has the rank 2, etc. The mean rank (computed over all iterations)
of a method is computed for the overall comparison of all methods. Alternatively, the
most frequent rank (mode) of the method can be used.

Let us remind the previous example and corresponding values of the error of the
three methods in each iteration (see in Table 4). Matching ranks are shown in Table 5.

Table 5: Ranks of three methods in each iteration

Number of iterations
1 2 3 4 5 6 7 8 9 10 Mean Mode

Method 1 3 3 3 2 2 2 2 2 2 3 3 2

Method 2 2 2 2 1 1 1 1 1 1 1 1.3 1

Method 3 1 1 1 3 3 3 3 3 3 2 2.1 3

Method 2 is the best of all methods according to both criteria, method 3 has the
second best mean rank, however the most frequent value of its rank is 3, and the most
frequent rank of the method 1 is 2, but the mean rank is 3.

The biggest advantage of this evaluation is that no external input is required as
the threshold used in the previous evaluation technique and each method is directly
compared to others. As we have shown in the abovementioned example, the mean of
ranks and the mode of ranks produce different results so the decision which method is
better rests with the user.
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Breaking Point

The main idea of this evaluation criteria is in finding a point (iteration), after which
a certain percentage of metric values would be bigger (e.g. if accuracy is adopted) or
smaller (e.g. if error is computed) than the given threshold.

Let us consider the example again, the corresponding mean error of the three
methods in each iteration is shown in Table 4 above. Let us assume that the point,
after which 95 % of values of the error would be less than or equal 0.15 is being found.
According to this criterion, method 2 is the best, as 95 % of error values are equal to
0.15 or smaller after three iterations. Method 1 reaches this point after eight iterations,
method 3 achieves this after 10 iterations.

Table 6: Percentage of values which are less than or equal to 0.15 in each iteration.
Iterations after which 95 % of values are less than or equal to 0.15 are bold.

Number of iterations
1 2 3 4 5 6 7 8 9 10

Method 1 0.30 0.33 0.38 0.43 0.50 0.60 0.75 1 1 1

Method 2 0.80 0.89 1 1 1 1 1 1 1 1

Method 3 0.30 0.33 0.25 0.14 0.17 0.20 0.25 0.33 0.50 1

Summarization

Let us summarize the results of our example in Table 7. The best results are marked
in bold, the second best results are displayed in italics.

Table 7: Summarization of determined criteria

Reaching the threshold Mean Rank Mode of Ranks Breaking Point

Method 1 in 8 it. 3 2 in 8 it.

Method 2 in 3 it. 1.3 1 in 3 it.

Method 3 in 2 it. 2.1 3 in 10. it.

Method 2 reaches the best results, as it proves itself best in three out of four criteria.
It is not easy to compare method 1 and 3, as method 1 is the second best in two out of
four criteria, whereas method 3 is the best in the reaching the threshold criterion and
the second best in the mean rank criterion.

3.3 Experiments

Several experiments on different datasets were conducted in order to evaluate some
of the active learning strategies. We compare random sampling to these strategies:
margin uncertainty sampling, the density-weighted strategy using the mean distance
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to all instances as the similarity function with two different parameters and algorithms
UMDN10 and UMDL from Section 2.4.2).

3.3.1 Data

Five datasets from UCI Machine Learning Repository [31] are used. We can see
descriptions of the used datasets in Table 8, whereas the number of classes is stored
in the column Classes, the number of features is in the column Features, the column
Training instances denotes the number of instances, which are available to training,
and the similar goes for the column Testing instances.

Table 8: Description of datasets

Dataset name Classes Features Training instances Testing instances

Banknote 2 4 684 684

Pima 2 8 384 384

Spambase 2 57 2281 2279

Statlog 7 19 1152 1151

3.3.2 Results

Selected stochastic algorithms (random sampling and margin uncertainty sampling)
were launched 150 times. The number of iterations is 150. The mean error on classes
was chosen as metric, the threshold for reaching the threshold and breaking point
evaluation criteria was determined as the mean error on classes on testing data, when
the classifier was trained on whole training data. The given percentage for breaking
point criterion is set to 95 %.

All results are shown in the following tables, and one table corresponds to one
dataset. The column RtT stands for the reaching the threshold criterion, MeanRC for
the mean rank comparison, ModeRC for the mode of ranks comparison, BP for the
breaking point comparison. The row RS stands for random sampling, MUS for margin
uncertainty sampling, DWD1 for density-weighted method with distance function weighted
by 1, DWD0.5 for density-weighted method with distance function weighted by 0.5. The
best results are highlighted in bold and the second best in italics.

Table 9: Evaluation criteria for Banknote dataset, threshold is set to 0.06.

Methods TRtT MeanRC ModeRC BP

RS 27 5.27 2 21

MUS 13 1.43 5 6

DMD1 13 2.38 3 7

DWD0.5 13 4.26 4 7

UMDN10 14 2.68 4 7

UMDL 13 4.97 1 6
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Table 10: Evaluation criteria for Pima dataset, threshold is set to 0.3.

Methods TRtT MeanRC ModeRC BP

RS 75 2.04 2 94

MUS 31 1.39 1 66

DMD1 116 4.38 5 115

DWD0.5 x 5.21 6 x

UMDN10 72 3.36 3 146

UMDL 101 4.62 4 139

Table 11: Evaluation criteria for Spambase dataset, threshold is set to 0.27.

Methods TRtT MeanRC ModeRC BP

RS 84 3.10 6 105

MUS 128 3.72 3 127

DMD1 35 2.15 1 29

DWD0.5 30 4.09 4 143

UMDN10 x 5.85 4 x

UMDL 37 2.07 5 33

Table 12: Evaluation criteria for Statlog dataset, threshold is set to 0.15.

Methods TRtT MeanRC ModeRC BP

RS 124 4.17 3 121

MUS 80 2.15 2 82

DMD1 103 3.39 4 102

DWD0.5 90 2.45 5 88

UMDN10 87 4.17 6 84

UMDL 122 4.67 3 122

The similar results on Banknote dataset are achieved by all active learning methods,
margin uncertainty sampling is the best in three out of four criteria (TRtT, MeanRC
and BP) and the same goes for UMDL algorithm (in criteria TRtT, ModeRC and
BP). All active learning methods are better than random sampling expect of ModeRC
criterion, where random sampling reaches the second best result.

Margin uncertainty sampling is a clear winner on Pima dataset, random sampling
reaches the second best results in three out of four criteria, UMDLN10 strategy achieves
the second best result in TRtT criterion. DWD0.5 strategy does not converge in 150
iterations, so it is overall at the sixth place.

DWD1 strategy is the best in two and the second best also in two criteria on
Spambase dataset, DWD0.5 method reaches the best result in TRtT criterion and
UMDL strategy in MeanRC criterion. Margin uncertainty sampling fails against random
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sampling in three out of four criteria, UMDLN10 strategy does not converge in 150
iterations.

Margin uncertainty sampling reaches the best results in all criteria on Statlog
dataset, UMDN10 is the second best in two criteria, UMDL and random sampling
in one criterion.

It is very important to determine whether an active learning method is better than
random sampling. The number we can see denotes when active learning methods reach
better results than random sampling in Table13.

Table 13: Summarization of how many times active learning methods are better than
random sampling in each criterion on all datasets.

Methods TRtT MeanRC ModeRC BP Sum

MUS 3 3 3 3 12

DMD1 3 3 1 3 10

DWD0.5 3 2 1 2 8

UMDN10 3 1 1 2 7

UMDL 3 2 2 2 9

Margin uncertainty is better than random sampling twelve times out of sixteen
cases, DWD1 strategy ten times and UMDL strategy nine times. DWD0.5 is better
only if the half of cases and UDMDN10 is better only seven times.

3.4 Discussion

We have proposed four evaluation criteria as an alternative to the most used method
which is the visual comparison.

As we saw in Section 3.3.2, results of these evaluation criteria do not often match
each other. It is difficult to determine which evaluation criterion provides the most
reliable performance, so the more thorough analysis is needed. Despite this fact, we can
recommend using these evaluation criteria in cases when it is not possible to evaluate
which method is better according to the visual comparison.

Proposed criteria were used to identify in how many criteria some method reaches
better results than random sampling. We used five methods on four different datasets,
margin uncertainty sampling achieved the best results of all active learning methods
compared to random sampling. It is still not possible to determine if margin uncertainty
sampling is better than other proposed methods,as more datasets with the different
number of instances, classes and features will be needed in order to do so.
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4 Active Learning on Imbalanced Data

In this section we will provide the introduction to what imbalanced data are and what
techniques are commonly used for handling the class imbalance.

4.1 Introduction to Class Imbalance

Machine learning can run into problems which are caused by the imbalance of classes.
It often concerns real-world applications like biomedical, financial or security data
analysis, text classification, face recognition, anomaly detection, etc. [35,41,42]

4.1.1 Characterization of Class Imbalance

The characterization of imbalanced datasets occurs when the number of instances in
each class is not approximately equal, but some class (or classes) contains much more
instances than other classes [41]. Class imbalance is often described by using the ratio
of numbers of instances in the most common class to the rarest one. According to He
et al. [35], if the ratio is 1:2, then datasets are marginally imbalanced, whereas they
are modestly imbalanced with the ratio 1:10 and extremely imbalanced with the ratio
1:1,000.

The problem of imbalanced data can be described in detail on the example. Consider
a dataset which contains data belonging to two classes, e.g. the class y1 includes 1,000
instances and the class y2 10 instances. The corresponding confusion matrix is shown
in the following table.

Table 14: Example of the confusion matrix of the imbalanced problem

Predicted y1 Predicted y2
Actual y1 1,000 0

Actual y2 10 0

We will show the so-called accuracy paradox on this example [43]. Although this is
a binary case, generalized metrics for a multi-class problem will be used because it does
not hold that one class is positive and the other is negative. A standard classification
method minimizing an error f can classify all instances as class y1, so the accuracy of
the prediction accb is 99 %, but it is clear that the classifier does not solve the given
problem. It seems to be more natural to use another metrics in this case.

As we mentioned in Section 3.1.2, the micro-averaged F-measure MiF gives the
priority to the performance on the majority class and the macro-averaged F-measure
MaF on the minority class. Results correspond with this assumption, it holds that
MiF = 0.99 and MaF = 0.5.
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As we mentioned before, as learning on skewed datasets is the common challenge,
so a large amount of approaches to deal with it exists.

4.1.2 Sampling Methods

Sampling methods are used for creating the dataset with relatively balanced classes
and two kinds of them exist: undersampling and oversampling [44].

In the case of undersampling, some instances of the majority class are removed.
This process can be done randomly, which is easy for implementation but is also able
to cause problems by removing informative instances, or there are techniques which
removes only the redundant noise [35], e.g. modifications of the k-nearest neighbor
algorithm [35,45] or using of the soft margin SVM classifier [45].

Random oversampling consists of repeatedly copying of the minority class instances.
Since this approach can lead to overfitting [35], Chawla et al. [46] have introduced
SMOTE algorithm, which is able to create new synthetic instances. The main idea
of SMOTE is the following: until the terminal condition is reached (generally as long
as the classes are imbalanced), the randomly chosen instance from the minority class
is chosen. Then, k nearest neighbors to the selected instance are computed and one
is randomly chosen. Values of the new instance’s features are given by the difference
between selected instances and its neighbor’s values of features multiplicated by the
number between zero and one.

Hybrid techniques, which are the combination of SMOTE algorithm and an undersampling
method, are also implemented [44].

4.1.3 Ensemble Methods

The main idea of ensemble methods is training of a group of classifiers and combining
their decisions [47]. The crucial condition in using ensembles is that classifiers do not
need to be accurate, but have to be diverse [42].

Several approaches are used for building ensembles, e.g. boosting algorithms such
as Adaboost, Random Forest [35] or SMOTEboost (which is the combination of a
boosting technique and SMOTE algorithm) [46].

4.1.4 Cost Sensitive Methods

In cost sensitive methods, the loss function is exploited which will largely penalize if
the minority class instances are misclassified [35].

There are cost sensitive variants of favorite machine learning approaches e.g. a cost
sensitive version of the SVM algorithm [35] or cost sensitive ensemble methods [41].
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4.1.5 Insensitive Classifiers

Hoens et al. in [35] have mentioned the possibility of using classifiers which are in
general skew-insensitive. One of them is naive Bayes because the conditional probability
of the observation xi given the class y and the probability of the class y are computed
before the conditional probability of the class y given the observation xi [35].

Decision trees are also skew-insensitive, e.g. Cieslak et al. [48] have proposed
Hellinger distance decisions trees whose splitting criterion is Hellinger distance.

4.2 Class Imbalance and Active Learning

As we showed in Section 2.4.3, highly skewed datasets can cause problems during
the initialization when it is impossible for the algorithm to find sufficient number of
instances of all classes. Moreover, Attenberg et al. [35] have mentioned that active
learning on extremely imbalanced data can suffer from the cold start problem because
it is hard to find informative instances of the minority class due to their rareness.

In any case, opinions on active learning on imbalanced datasets differ. On the one
hand, active learning can be used as the sampling method (see Section 4.1.2), on the
other hand, it is often mentioned that active learning on skewed data can be problematic
and there are approaches which enable active learning to learn a sufficiently accurate
classifier [35]. We will explore both mentioned aspects in this section.

4.2.1 Active Learning as the Sampling Method

Attenberg et al. [35] and also Tomanek et al. [1] have mentioned that active learning
can be effective on not extremely imbalanced datasets because it is able to choose the
most informative instances.

The motivation for using active learning as the sampling strategy is that the final set
of labeled instances SL is often more balanced than the initial pool [1]. It is supposed
that it is more sufficient to use active learning to undersampling rather than some
random selection of instances because random undersampling instead of active learning
can discard the most informative observation.

Ertekin et al. [30] has proposed the VIRTUAL algorithm which combines active
learning using SVM for classification and the SMOTE algorithm. The idea of the
VIRTUAL algorithm is the following: When active learning selects the instance which
comes from the minority class, then SMOTE is used, i.e. one of the k nearest neighbors
of the selected observation is chosen and used for the creation of the new instance.

Zhu et al. [39] have suggested another active learning algorithm which combines
both undersampling and oversampling. The set of labeled instances is resampled in each
iteration of active learning; either the majority class is undersampled, or the minority
class is oversampled by using the algorithm called BootOS, which iterates through all
instances of the minority class and creates new instances as the combination of their
neighbors.
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4.2.2 Skew-sensitive Methods of Active Learning

Skew-sensitive methods of active learning in general prefer instances from minority
class, so the final set of labeled instances SL would be more balanced and its performance
in the imbalanced setting would be better [35].

The favorite approach to solve this problem is the utilization of the SVM classifier
[1, 35, 40]. SVM-based active learning seems to be very effective without any other
skew-sensitive modification of the algorithm.

Let remind ourselves that the ensemble methods which we mentioned in Section
4.1.3 and which are in many cases used for imbalanced datasets. They consist of learning
ensemble of classifiers whose combination results in better performance than using
only one classifier. The similarity between ensemble methods and query by committee
strategy is obvious, therefore it seems to be promising to use query by committee
strategy with sufficiently diverse committees to handle the class imbalance problem.

Tomanek et al. [1] has proposed a method, which is the combination of the vote
entropy (see in Section 2.3.2) and the criterion of class distribution. The instance is
queried for which holds:

x∗V EU = arg max
x

|Y |∑
i=1

bi
V (yi)

|C|
log

V (yi)

|C|
, (37)

where bi is the weight of class yi corresponding to its importance. The larger value of
bi denotes the larger tendency to query instances which are classified as belonging to
the class yi.

Another option to deal with the class imbalance is using density-weighted strategies
(see in Section 2.3.4). The advantage of using density-weighted strategies is the ability
to combine one criterion given by the standard query strategy and another one representing
class distribution [1].

Attenberg et al. [35] have mentioned several density-weighted heuristics. One of
them is mainly used for text classification [28] and it is the combination of entropy
uncertainty sampling and the average cosine similarity of k nearest neighbors:

x∗Ecos = arg max
x

|Y |∑
i=1

ca(knn(x))PY |X(y|x) logPY |X(y|x), (38)

where knn(x) is the function which returns k nearest neighbors of x and ca() is the
function which computes the average cosine similarity of them.

There are also methods which cover only the density of information and not standard
active learning strategy. One of them is a method called sampling by clustering, in
which the whole space is clustered and the nearest instances to centroids are sampled
[28].

It is also possible to adopt sampling techniques which we mentioned in the previous
section.
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4.3 Experiments

4.3.1 Synthetic Data

We have used two different datasets which were generated from multivariate Gaussian
distributions. We have already encountered the first of them in Section 2.4.3 and it
consists of two two-dimensional Gaussian models: instances of class 1 are generated
with parameters µ1 = [0, 2], σ1 = [1, 1.5; 1.5, 3] and instances of the second class
with parameters µ2 = [2, 3], σ2 = [1, 1.5; 1.5, 3]. To observe how the class imbalance
influences the performance of active learning, the size of the first class differs in each
setting – it is either 1,000, 500, 200 or 50. Number of instances of the class 2 is 1,000
for all settings.

The second dataset is made up of three two-dimensional Gaussians: The first one
is generated with parameters µ1 = [3,−6.5], σ1 = [1, 0; 0, 1], the second one with
parameters µ2 = [7,−3], σ2 = [5, 0; 0, 5] and the third one with parameters µ3 =
[0, 0], σ3 = [10, 0; 0, 10]. The number of instances of classes 2 and 3 is always 1,000,
the size of the first class differs: It is either 1,000, 500, 200, 100 or 50. We can see the
proposed datasets with class sizes 20, 1,000 and 1,000 in the Figure 8.

Figure 8: Synthetic Dataset 2
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We chose these two datasets because they are in general simple and obtained results
are easily interpretable. Additionally to these reasons, it was necessary to use dataset
which contains more than two classes, because we expect that it will cause more
difficulties.

4.3.2 Influence of Imbalance on Active Learning

We have launched margin uncertainty sampling and also random sampling on proposed
datasets to figure out how class imbalance influences active learning, if at all. The
initial set of labeled instances SL contained two instances of each class, number of
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iterations was 1,000 and every algorithm was repeated ten times to reduce the influence
of randomness.

We can see values of individual classes miss rates after 10, 100 or 1,000 iterations
for the first dataset in Table 15 (for margin uncertainty sampling) and in Table 16 (for
random sampling).

Table 15: Mean miss rate of individual classes after 10, 100 and 1,000 iterations with
different class imbalance of training data, strategy: margin uncertainty sampling.

After 10 it. After 100 it. After 1,000 it.
Ratio miss1 miss2 miss1 miss2 miss1 miss2

1:1 0.261 0.133 0.124 0.059 0.074 0.064

1:2 0.250 0.054 0.150 0.041 0.088 0.045

1:5 0.429 0.032 0.174 0.034 0.087 0.061

1:10 0.366 0.037 0.237 0.021 0.049 0.110

1:20 0.394 0.049 0.256 0.025 0.050 0.241

Table 16: Mean miss rates of individual classes after 10, 100 and 1,000 iterations with
different class imbalance of training data, strategy: random sampling, dataset: 1.

After 10 it. After 100 it. After 1,000 it.
Ratio miss1 miss2 miss1 miss2 miss1 miss2

1:1 0.240 0.173 0.090 0.086 0.073 0.064

1:2 0.390 0.087 0.108 0.080 0.078 0.058

1:5 0.636 0.041 0.159 0.067 0.081 0.066

1:10 0.501 0.063 0.182 0.053 0.101 0.057

1:20 0.451 0.075 0.215 0.079 0.106 0.072

There is not any obvious significant difference when random sampling is used, but it
seems that larger class imbalance influences active learning, but, against expectations,
the error on the majority class increases.
We can see that values of individual classes miss rate after 10, 100 or 1,000 iterations
for the second dataset in Table 17 (for margin uncertainty sampling) and in Table 18
(for random sampling).
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Table 17: Mean miss rates of individual classes after 10, 100 and 1,000 iterations with
different class imbalance of training data, strategy: margin uncertainty sampling.

After 10 it. After 100 it. After 1,000 it.
Ratio miss1 miss2 miss3 miss1 miss2 miss3 miss1 miss2 miss3

1:1 0.037 0.718 0.058 0.020 0.112 0.186 0.008 0.111 0.174

1:2 0.166 0.404 0.026 0.009 0.150 0.144 0.012 0.105 0.175

1:5 0.006 0.480 0.095 0.011 0.183 0.147 0.021 0.110 0.150

1:10 0.039 0.271 0.064 0.090 0.162 0.076 0.035 0.107 0.137

1:20 0.072 0.394 0.017 0.022 0.191 0.023 0.277 0.089 0.091

Table 18: Mean miss rates of individual classes after 10, 100 and 1,000 iterations with
different class imbalance of training data, strategy: random sampling.

After 10 it. After 100 it. After 1,000 it.
Ratio miss1 miss2 miss3 miss1 miss2 miss3 miss1 miss2 miss3

1:1 0.045 0.544 0.202 0.007 0.177 0.142 0.012 0.143 0.121

1:2 0.022 0.494 0.176 0.009 0.175 0.139 0.014 0.138 0.123

1:5 0.043 0.442 0.156 0.012 0.172 0.131 0.023 0.139 0.111

1:10 0.019 0.433 0.148 0.039 0.175 0.128 0.023 0.139 0.112

1:20 0.097 0.310 0.038 0.084 0.145 0.040 0.018 0.124 0.048

Let us denote that active learning reached better results in early stages of the
algorithm (after ten iterations) than random sampling. Otherwise, there is no obvious
difference between them, instead of results obtained on the dataset with the largest
class imbalance. The miss rate of the minority class (class 1) decreases, when random
sampling is used, but te miss rate of the minority class after 1,000 iterations, when
active learning is exploited, is high (0.277).

We will depict the miss rate of class 1 on dataset with the imbalance ratio 1:20
for both active learning and random sampling to see, if there is an evident difference
between them. It is shown in Figure 9a. We can see miss rate of individual classes on
dataset with equal class imbalance in Figure 9b for the comparison.

It is shown in Figure 9a that the miss rate of the minority class gradually decreases
when the random sampling is adopted. On the other hand, when active learning is
used, the miss rate of the minority class is large: between 210 and 574 iterations, and
increases after 811 iterations. We can see that when classes are balanced (Figure 9b),
then the miss rate of the minority class decreases and when active learning is used, it
slightly increases after 700 iterations. When random sampling is used, the error of the
minority class is almost constant.
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(a) Dataset with the class ratio 1:20
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(b) Dataset with the class ration 1:1

Figure 9: Miss rate of the minority class on the dataset with the class imbalance ratio
1:20 and on the dataset with the class imbalance ratio 1:1 for random sampling and
active learning

4.3.3 Active Learning Methods for Imbalanced Data

As apparent from the previous section, the favorite technique to address active learning
on skewed datasets is using of the query by committee strategy and the SVM classifier.
Tomanek et al. [1] and Ertekin et al. [30] have already dealt with this setting, we decided
to focus on active learning using the margin uncertainty sampling strategy.

As we saw in the previous section, the extreme class imbalance on the second dataset
causes the high miss rate of the minority class, so we will perform several experiments
to figure out if some method that deals with the class imbalance can help.

The variant of SMOTE algorithm as oversampling method will be utilized. Every
time when instance of the minority class is queried, another labeled instance also
belonging to the minority class is randomly chosen and its values of features are
subtracted from queried instance’s features a multiplied by random number from the
range between 0 and 1 in order to create a new instance which is added to the set of
labeled instances SL.

An undersampling method will be also used. When the number of instances belonging
to the minority class is k times smaller than number of instances in the majority class,
then the majority class is undersampled using k-means algorithm on majority class
instances, k centroids replace these instances in the set of labeled observations.

We can see mean error on classes of standard margin uncertainty sampling and of
margin uncertainty sampling, when the undersampling method is adopted with k = 2
and k = 10 in Figure 10a, and when oversampling is used in Figure 10b. The mean
error on classes is the average of ten runs.
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(a) MUS strategy with undersampling methods
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(b) MUS strategy with oversampling

Figure 10: Mean error on classes when undersampling methods with k = 2 and k = 10
are adopted or when oversampling is used, MUS denotes margin uncertainty sampling

It is shown in Figure 10b that when k is small, then it causes oscillation of the
mean error on classes. When k is bigger (e.g. k = 10), then the mean error on classes
does not oscillate but is still higher than when no undersampling is utilized. The same
goes for the case when the oversampling method is adopted: The mean error on classes
is bigger than when oversampling is used, on the other hand, the error is not so high
around the iteration 1,000.

It seems to be problematic to use undersampling, so we will focus more on oversampling.
We can see error on each class depicted in Figure 11.

The miss rate of class 3 is smaller when the oversampling method is used, but it is
overall bigger than miss rates of class 1 and class 2.

As we mentioned in Section 4.2.2, density-weighted methods are often utilized to
handle the class imbalance problem. We will use DWD1, UMDN10 and UMDL methods
without and with oversampling and compare them to the margin uncertainty sampling
strategy.

As we can see in Figure 12, where mean errors on classes of random sampling,
margin uncertainty sampling and all used density-weighted methods are depicted, a
clear decision which method leads to better result could not be drawn, so we will
utilize evaluation criteria proposed in Section 3.2.2
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(b) Miss rate of class 2
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(c) Miss rate of class 3

Figure 11: Miss rate of individual classes when only margin uncertainty sampling is
used and when margin sampling together with oversampling is adopted

.

0 100 200 300 400 500 600 700 800 900 1000

iterations

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m
ea

n 
er

ro
r 

on
 c

la
ss

es

MUS
DWD1
UMDN10
UMDL

Figure 12: Mean error on class of margin uncertainty sampling strategy and three
density-weighted methods: DWD1, UMDN10 and UMDL.

Achieved results are shown in Table 19. We set the threshold to 0.11, because of its
estimation from Figure 12. The abbreviation OS means oversampling. The best value
of a criterion is bold, the second best is in italics.
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Table 19: Evaluation criteria for the second synthetic dataset with threshold set to
0.11.

Methods TRtT MeanRC ModeRC BP

RS 109 3,48 3 136

MUS 31 3,77 2 908

DWD1 30 2,54 1 115

UMDN10 38 2,97 5 38

UMDL 113 4,41 2 132

MUS + OS 216 8,38 8 982

DWD1 + OS 38 6,44 9 x

UMDN10 + OS 124 6,01 7 x

UMDL + OS 53 7,01 6 x

The clear winner is DWD1 strategy, which reaches the best results in three out of
four criteria and is the second best in the remaining criterion. UMDN10 strategy is
the best in one criterion and the second best also in one criterion, margin uncertainty
sampling reaches the second best results in two criteria.

All methods with oversampling have failed, as their performances are always worse
than their versions without oversampling.

Similarly as we did before, we will compare the results of all active learning methods
to random sampling’s ones. We can see the number of criteria in which the active
learning method was better than random sampling in Table 20. OS denotes oversampling.

Table 20: Summarization of number of criteria in which the active learning method
was better than random sampling

Methods Number of criteria

MUS 3

DMD1 4

UMDN10 3

UMDL 2

MUS + OS 0

DWD1 + OS 0

UMDN10 + OS 0

UNDL + OS 0

Our conclusion has been confirmed. DWD1 strategy is better than random sampling
in all criteria, UMDN10 and margin uncertainty strategies in three out of four criteria,
UMDL strategy in two criteria and methods with oversampling in none.

Because DWD1 strategy turns out to be the best choice on the second synthetic
dataset, let us compare miss rates of individual classes of provided by DWD1 and
margin uncertainty sampling strategies. Graphs are shown in Figure 13.

The miss rate of class 1, when margin uncertainty sampling is used, is smaller than
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that one, when DWD1 strategy is adopted, in early iterations, but it is higher at the
end of the process. The miss rate of class 2 is slightly smaller, when MUS strategy is
adopted, through all iterations. The miss rate of class 3 is overall smaller, when DWD1
strategy is utilized.
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(a) Miss rate of class 1
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Figure 13: Miss rate of individual classes when margin uncertainty sampling and DWD1
strategy are used

4.4 Discussion

We defined what class imbalance is and what are the most frequent approaches to
address this problem. Then, we mentioned that active learning is used in many
applications as a sampling method, but it is sometimes necessary to utilize some method
which deals with the class imbalance and which helps active learning to learn more
accurate model.

Furthermore, we focused on the margin uncertainty sampling strategy and performed
several experiments using both oversampling and undersampling on a synthetic dataset.

If undersampling is embraced, then the mean error on classes starts to oscillate.
That does not happen if oversampling is added, but the miss rate of only one class
decreases and the error on classes overall increases. If we evaluate proposed criteria
from Section 3.2.2, the performance of methods with oversampling fails and does not
acquire results of methods without oversampling.
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We achieved the great improvement if density-weighted methods are used. The DWD1
strategy reaches the best results. We come to a conclusion that it seems to be appropriate
to use a density-weighted method on dataset with the extreme class imbalance, rather
than some sampling method.
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5 Active learning for Sleep EEG Analysis

We will focus on active learning on sleep EEG datasets. First, we will provide a brief
introduction to this kind of data, then we will describe which problem we would solve.
Furthermore, experiments will performed and obtained results will be commented.

5.1 Sleep EEG

Electroencephalogram (EEG) is a record of cumulative electrical activity of neurons
in the brain through electrodes which are placed on scalp [49]. The EEG signal can
be divided into five waves according to their frequency – alpha, beta, gamma, delta
and theta [50]. Alpha waves occur during relaxation with closed eyes, beta waves are
typical for normal consciousness, gamma waves are associated with higher functions of
the brain, delta waves occur during the deep sleep and theta waves are associated with
drowsiness and beginning of sleep [49].

Polysomnogram (PSG) is a record of several biological signals in sleep, typically of
EEG, EOM (electrooculogram), ECG (electrocardiogram) and EMG (electromyogram).
Polysomnography is able to distinguished individual stages of sleep [50].

It is distinguished between two stages of sleep that cyclically repeat 4-6 times during
sleep of a normal human – non-rapid eye movement (NREM) and rapid eye movement
(REM) [51].

NREM sleep is further divided into four stages. Alpha activity typically decreases
and theta waves reach the highest amplitude in stage 1. Movement of eyes is slow and
EMG activity decreases. Stage 2 overall occupies around fifty percent of sleep and sleep
spindles and K-complexes appear during that. Stage 3 and 4 are also called slow-wave
sleep and are characterized by high delta activity. During stages 2-4, EMG activity is
low, compared to wakefulness and stage 1 [51].

A combination of slow alpha and theta activity appears in REM stage of sleep. We
are able to distinguish between phasic and tonic stages in REM sleep. The characteristics
of phasic stage are rapid eye movement, irregularities in respiration, twitching of
muscles and changes in the heart rate. Tonic stage is characterized by muscular
weakness and desynchronized EEG [51].

Although the term ”sleep EEG” is in the title of this thesis, we typically deem the
whole PSG recording because we aim to learn a classifier, which distinguishes between
wakefulness, stages of NREM sleep and REM sleep, so only the record of EEG is
insufficient.

5.2 Problem Statement

Currently, when it comes to classifying of sleep to the sleep stages mentioned above, a
specialist has to go through all segments of this record and assign them to a proper class
(annotate them). We assume that active learning is well suited to this task because
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it enables to select only the most informative instances for labeling, so the specialist
would classify a smaller amount of observations. The goal of our class is to exploit
active learning to learn a classifier so that it would not be necessary to annotate all
observations. These observation will be further discussed in Section 5.3.1. Instances
will be divided into five classes in our setting: WAKE, REM, NREM1, NREM2 and
NREM3.

Note that annotating of a segment is often ambiguous because individual stages are
changing continuously e.g. it is difficult to determine if a segments still belongs to the
REM stage or if it is already in NREM1 stage. Furthermore, labeling furnished by two
experts can vary so let us assume that available annotations we posses only come from
one specialist. Nevertheless, we suppose that the miss rate of NREM1 is the biggest of
miss rates of other classes. We also assume that uncertainty sampling will query these
instances which are tricky to classify, so density-weighted methods are expected to be
more convenient for this tasks. Sleep data are also typically imbalanced (see in Section
5.3.1) and density-weighted methods are able to deal with it, as it emerges from Section
4.3.3.

5.3 Experiments

Six active learning methods (margin uncertainty sampling (MUS), DWD1, DWD0.5,
UMDN10, UMDN50 and UMDL) are compared to random sampling (RS) to determine
if active learning is really able to help or it is sufficient to just randomly annotate several
instances. We decided to utilize density-weighted methods due to reasons mentioned
above.

Evaluation criteria proposed in Section 3.2.2 are used. The initial set of labeled
instances SL always contains two instances of each class, the process is terminated
after 300 iterations and the parzen window estimator is used as the classifier.

5.3.1 Sleep EEG Data

At our disposal, we have five sleep records of a few healthy patients, which were split to
30 seconds-long segments, and these segments were distinguished by a specialist into five
classes: WAKE, REM, NREM1, NREM2 and NREM3. Each observation is represented
by its 82 features. Six EEG channels were chosen according to the recommendation
of American Academy of Sleep Medicine (AASM): F4-M1, C4-M1, O2-M1, F3-M2,
C3-M2, O1-M2 [52], on which eleven features were computed. Further, two EOG
channels were used, on which five features were acquired, and also two EMG channels,
on which three features were computed. We will perform experiments on observations
consisting of all 82 features and also on observations containing ten features which were
acquired by the principal component analysis.
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Table 21: Number of instances of each class for each dataset

Dataset name WAKE REM NREM1 NREM2 NREM3 Sum

Sleep1 284 53 87 309 146 879

Sleep2 200 88 64 443 53 848

Sleep3 292 124 61 316 118 911

Sleep4 362 15 103 299 17 796

Sleep5 87 107 57 482 121 854

The number of instances of each class for all datasets can be seen in Table 21. We
split all datasets to two almost equally large parts – to training and testing data. We
suppose that we do not know labels of training data except the ones which belong to
the initial set of labeled instances. Note that the utilization of cross-validation is not
well-suited for this task, because we do not know labels of training data, except for
instances belonging to the initial set of labeled observations.

5.3.2 Results

First of all, we use all 82 features of observations that are classified into all five classes.
The threshold, which is used in reaching the threshold and breaking point criteria, is
estimated visually from the courses of the mean error on classes. The value of given
percentage, which is used in the breaking point criterion, is set to 95 %.

We can see values of all criteria for all datasets in the following tables. The best
results of a criterion are highlighted in bold, the second best ones are in italics.

Table 22: Evaluation criteria for Sleep1 dataset, threshold is set to 0.15.

Methods TRtT MeanRC ModeRC BP

RS 248 6.61 5 240

MUS 89 3.54 7 78

DWD1 100 3.73 2 91

DWD0.5 95 4.39 3 85

UMDN10 46 1.44 4 50

UMDN50 98 4.70 6 89

UMDL 73 3.59 1 65
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Table 23: Evaluation criteria for Sleep2 dataset, threshold is set to 0.2.

Methods TRtT MeanRC ModeRC BP

RS 232 4.54 6 240

MUS 165 3.09 5 233

DWD1 262 5.37 2 262

DWD0.5 x 5.72 1 x

UMDN10 159 2.10 3 154

UMDN50 105 1.57 4 100

UMDL x 5.61 4 x

Table 24: Evaluation criteria for Sleep3 dataset, threshold is set to 0.15.

Methods TRtT MeanRC ModeRC BP

RS 215 6.28 6 221

MUS 117 3.99 6 115

DWD1 128 3.41 3 119

DWD0.5 93 3.01 4 86

UMDN10 101 3.49 2 106

UMDN50 98 1.74 7 88

UMDL 148 6.09 1 140

Table 25: Evaluation criteria for Sleep4 dataset, threshold is set to 0.2.

Methods TRtT MeanRC ModeRC BP

RS x 5.63 2 294

MUS 135 2.49 6 254

DWD1 x 5.98 5 x

DWD0.5 x 3.30 4 x

UMDN10 278 3.72 3 277

UMDN50 235 2.78 1 x

UMDL 234 4.10 3 x

Table 26: Evaluation criteria for Sleep5 dataset, threshold is set to 0.3.

Methods TRtT MeanRC ModeRC BP

RS 154 3.92 2 193

MUS 144 3.37 6 149

DWD1 68 5.33 1 239

DWD0.5 74 4.88 1 138

UMDN10 71 2.64 3 108

UMDN50 93 2.33 4 117

UMDL 165 5.53 7 162
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Now, let us summarize all these results. In Table 27, it is shown how many times
and in which criterion a certain method is better than random sampling, to determine
if active learning works and which active learning method leads to better results.

Table 27: Summarization of how many times active learning methods are better than
random sampling in each criterion on all datasets.

Methods TRtT MeanRC ModeRC BP Sum

MUS 5 5 1 5 16

DMD1 3 2 4 2 11

DWD0.5 2 3 4 3 12

UMDN10 5 5 3 5 18

UMDN50 5 5 2 4 16

UMDL 3 3 3 3 12

The UMDN10 strategy provides better results than random sampling 18 times out
of 20 cases. This strategy is beaten by random sampling only in the mode of ranks
criterion in which random sampling is the second best strategy on datasets Sleep4 and
Sleep5. If this strategy is used on Sleep1 dataset with the given threshold, it is able to
save 833 instances for annotating (i.e. almost 95 % of all training data), 689 instances
on Sleep2 dataset (i.e. 81.25 % of all training data), 813 instances on Sleep3 dataset
(i.e. 89 % of all training instances), 518 instances on Sleep4 dataset (i.e. 65 % of all
training data) and 783 instances on Sleep5 dataset (i.e. almost 92 % of instances).

Margin uncertainty sampling and UMDN50 strategies share the second place.
UMDN50 strategy beats margin uncertainty sampling strategy in thirteen out of twenty
cases, but on the other hand, UMDN50 fails in the breaking point criterion on Sleep4
dataset. Both strategies save almost the same number of instances on Sleep1 datasets
– 90 % of training instances in the case of margin uncertainty sampling and 89 % of
training data in the case of UMDN50 strategy. MUS saves 80.5 % of training data on
Sleep2 dataset, UMDN50 strategy saves almost 88 %. On the Sleep3 dataset, margin
uncertainty sampling saves 80 % of instances and UMDN50 strategy 89 %. Margin
uncertainty sampling saves 83 % and UMDN50 strategy 70 % of instances on Sleep4
dataset. UMDN50 saves 89 % of training data on Sleep5 dataset and MUS strategy
saves 83 % of instances.

UMDL and DWD0.5 strategies reaches better results than random sampling only
in twelve out of twenty criteria, DWD1 in eleven criteria. DWD1 provides good results
on Sleep5 dataset where is the best in one criterion and the second best also in one
criterion, it saves above that 92 % of training instances on this dataset. DWD0.5
reaches the best results on Sleep3 datasets, it saves almost 90 % of training data there
and is the best in two criteria. UMDL strategy is the best in one criterion and the
second best in two criteria on Sleep1 dataset where it saves almost 92 % of instances.

If we will summarize how many instances a particular method saves on all datasets
in total, then MUS saves almost 85 % of all instances, DWD1 strategy saves less than
80 % of all instances, DWD0.5 strategy saves also less than 80 % of observations, both
UMDN10 and UMDN50 save 85 % of instances and UMDL saves less than 79 % of all
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observations. Random sampling saves less than 73 % of all instances. On the other
hand, random sampling and DWD1 strategies do not reach the given threshold on
Sleep4 dataset, UMDL strategy on Sleep2 dataset and DWD0.5 on Sleep2 and Sleep4
datasets. From this point of view, DWD0.5 achieves the worst results of all strategies.

As we mentioned in Section 5.2, we suppose that the miss rate of NREM1 is the
largest of miss rates of other classes. Let us depict miss rates of all classes on Sleep1
and Sleep2 datasets. The miss rates of all classes when MUS strategy is used on Sleep1
dataset is shown in Figure 14a, when UMDN10 strategy is adopted on the same dataset
is depicted in Figure 14b. The miss rate of NREM1 class on Sleep2 dataset is shown
in Figure 14c (in the case of using MUS strategy) and in Figure 14d (for UMDN10
strategy). Our assumption is confirmed, the miss rate of NREM1 class reaches the
highest values of all other miss rates.
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(a) Sleep1 dataset, MUS strategy
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(b) Sleep1 dataset, UMDN10 strategy

0 50 100 150 200 250 300

iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
is

s 
ra

te

WAKE
REM
NREM1
NREM2
NREM3

(c) Sleep2 dataset, MUS strategy
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(d) Sleep2 dataset, UMDN10 strategy

Figure 14: Miss rates of all classes on Sleep1 and Sleep2 datasets

Let us perform experiments on these two datasets when NREM1 class is excluded.
Results are shwon in Figure 15. Miss rates of all classes with classification to four or to
five classes on Sleep1 dataset are depicted in Figure 15a, the same on Sleep2 dataset is
shown in Figure 15b.
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Figure 15: Miss rates of all classes on Sleep1 and Sleep2 datasets when observations
are classified into four (without NREM1 class) or into all five classes

It is clear that when instances belonging to NREM1 are removed, then the overall
mean error on classes is smaller. An interesting fact is that if the classifier distinguishes
between five classes, then UMDN10 strategy seems to be more accurate than margin
uncertainty sampling, and if instances from NREM1 class are excluded, then margin
uncertainty sampling reaches better results than UMDN10. Let us evaluate our proposed
criteria on Sleep1 and Sleep2 datasets when the classifier classify into four classes, for
all strategies. The threshold in both cases is set to 0.1. Best achieved result in each
criterion is in bold, the second best is in italics.

Table 28: Evaluation criteria for Sleep1 dataset when NREM1 class is excluded,
threshold is set to 0.1

Methods TRtT MeanRC ModeRC BP

RS 65 6.65 7 54

MUS 45 3.33 4 32

DWD1 24 3.56 4 20

DWD0.5 24 3.32 3 23

UMDN10 41 5.03 6 33

UMDN50 36 4.46 5 49

UMDL 33 1.65 1 19
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Table 29: Evaluation criteria for Sleep2 dataset when NREM1 class is excluded ,
threshold is set to 0.1

Methods TRtT MeanRC ModeRC BP

RS 84 5.61 5 108

MUS 70 3.51 5 93

DWD1 72 4.58 2 64

DWD0.5 70 3.75 4 58

UMDN10 49 1.71 1 37

UMDN50 67 2.51 7 55

UMDL 82 6.33 7 97

Our assumption is confirmed only on Sleep1 dataset when MUS strategy is better
than UMDN10 strategy in all criteria. On the other hand, UNDM10 strategy is better
than margin uncertainty sampling in three out of four criteria on Sleep2 dataset.

Since 82 is a large amount of feature, the principal component analysis is used on
Sleep1 dataset to reduce the number of features. In Figure 16, it is shown that with
the decreasing number of features the overall mean error on classes increases. Notice
that the performance of UMDN10 strategy gets worse with the decreasing number of
features. The decision is reached that UMDN10 strategy might be better in our setting
(when all 82 features are used), but margin uncertainty sampling is more general and
suited and fits for datasets which we have not a large amount of information about.

5.4 Discussion

Experiments on five sleep datasets were performed in this section. Observation were
classified to five classes: WAKE, REM, NREM1, NREM2 and NREM3. Since sleep
data are in general imbalanced and we acquired good results using density-weighted
active learning methods on skewed datasets, UMDN strategy with different parameters,
DWD strategy also with different parameters and UMDL strategy were used together
with the standard margin uncertainty sampling strategy and random sampling.

The best results were acquired by using the UMDN10 strategy which reached the
better results than random sampling in most cases.

Although UMDN10 strategy’s performance seemed to be the best, the quality of
margin uncertainty sampling cannot be omitted. When all eighty-two features of
instances were used, margin uncertainty got the second best results. When twenty
or less features (acquired by PCA) were exploited, margin uncertainty sampling led
to better performance than UDN10 strategy despite the fact that overall mean error
of all strategies increased. To sum up, margin uncertainty sampling is well-suited for
application where there is no former knowledge about data.

It was also found out that miss rate of NREM1 class is the largest. We assume
that it is caused by the fact that this state is transient between REM sleep and deeper
stages of sleep so it is difficult for a specialist to determine if an instances belongs to
REM or to NREM1 stage.
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Figure 16: Mean error on classes on Sleep1 dataset for different number of features
acquired by PCA
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(a) All features used
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(b) 50 features
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(c) 20 features
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(d) 10 features
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6 Conclusion

The aim of this thesis was the utilization of active learning on Sleep EEG classifier.
Because this kind of data is typically imbalanced, it was necessary to focus on active
learning methods which are well-suited for the class imbalance problem.

Since active learning methods are mostly compared visually, it was first required to
implement several evaluation methods. We proposed four criteria for the evaluation,
which all are described in Section 3.2.2 and used them for evaluating active learning
methods on UCI Machine Learning Repository datasets. We came to conclusion that it
is still hard to compare active learning methods, even when these criteria are adopted,
because one method can reach the best result in one criterion but completely fail in
another. Due to this fact, we suggest to compare results acquired by criteria with these
ones achieved by random sampling. If a method is worse than random sampling in
more than fifty percent of each cases, then this method fails.

We then concentrated on the influence of class imbalance on active learning. Because
query by committee active learning strategy is often exploited to handle the class
skewness problem, we decided to focus more on uncertainty sampling methods and
density-weighted methods which use uncertainty sampling as the function of
informativeness. For this reason, several experiments with adaptive oversampling and
undersampling were performed and we reached the decision that density-weighted
strategies without any sampling method are convenient for datasets which are imbalanced.

We utilized three density-weighted methods (we proposed two of them in Section
2.4.2) with different parameters, margin uncertainty sampling and random sampling
on five datasets containing sleep data. The best results were obtained by our UMDN10
strategy, which beats random sampling in 18 out of 20 cases (four criteria are computed
on five datasets), and which saves more 80 % of instances for labeling on each dataset
expect one, it saves even more than 90 % of instances on two datasets. Though,
the UMDN10 strategy reached the best results, we cannot omit results acquired by the
basic margin uncertainty sampling strategy, which lead to better results than UMDN10
strategy, where the number of features was decreased by PCA. We reached the same
decision as Settles et al. [12] and that is as follows: although we can develop strategies
which are well-suited for our concrete problem, the simplest least confidence strategies
are not outdated.

We figured out that NREM1 class has the biggest miss rate of all other classes. It
could be caused by an ambiguous transition between REM sleep and deeper stages of
sleep and we assume that if these ambiguous instances were labeled by other specialist,
he or she would be able to classify them differently. In active learning terminology, this
is called “noisy oracles”. Although heuristics which deal with noisy oracles exist, many
aspects of this problem are still open [2], so the further research might be more focused
on them.
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We did not take into account that sleep stages are time-dependent, i.e. the transition
e.g. between WAKE and REM stage or REM and NREM1 stages is possible, but not
possible between e.g. REM and NREM2. The future work should also more focus on
this setting.
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A Contents of CD

The attached CD contains:

• The electronic version of this thesis in PDF format

• The folder called active learning which contains the source code

• The folder called data which contains all utilized datasets
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B Data and Source Code

All used data are stored in the data folder. UCI datasets, which were used in Section
3.3, are in corresponding mat-files: Banknote, Pima, Spambase and Statlog. Files which
begin with the word data1 contains data of the first dataset which was used in Section
4.3. The number 11 corresponds to the class ratio 1:1, the number 12 to the class ratio
1:2, etc. Data of the second dataset from Section 4.3 are stored in files starting with
data2. Sleep datasets, which were utilized in Section 5.3, are stored in files Sleep1,
Sleep2, Sleep3, Sleep4 and Sleep5.

All experiments proposed in this thesis were performed in MATLAB environment
[53] with the utilization of PRTools framework [54]. The folder program contains m-files
– strategies which were described in this thesis are in files which start with the world
strategy, files called oversampling and undersampling contain these sampling methods
and two initialization techniques are stored in files starting with the word init.

The program is launched from the file main. The user has to specify which dataset
will be used, the number of iterations and repetitions, the used classifier, how many
instances will be in the initial set of labeled observations and if some sampling method
will be used. Note that if it is needed to use undersampling, then the variable under
denotes the biggest possible ratio of the minority to the majority class. When it is not
necessary to exploit oversampling, then the variable over is empty (i.e. over = {}).

The user has to assign which initialization or learning strategies will be used. It is
shown on the following example:

inits = {’init kmeans’, 4;}
strategies = {’strategy rs’, [], []; ’strategy umdn’, 10’, ’det’;}

The proposed entry means that the k-means initialization will be used with k = 4
and random sampling and UMDN10 strategies will be utilized. The second term in
strategies specifies parameters of a method (e.g. it is empty in the case of random
sampling, or it contains the number 10 in the case of UMDN10 strategy). Note that
the term ’det’ is added to every deterministic strategies which are UMDN, UMDL and
DWD strategies with different parameters. Least confidence strategies are stochastic
in our setting – if there are more instances which have the same value of uncertainty,
then one of them is randomly selected.

The structure all data contains cells, each of them correspond to one strategy. Each
cell contains the identification of used initialization and learning strategies, the mean
error on testing data, the mean error on training data, miss rates of all classes and
values of a criterion in each iteration and in each repetition of the algorithm.
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