Detecting Objects for Autonomous System Verification
Detekce objektů pro verifikaci algoritmů autonomního systému
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Files
Abstract
V této práci jsme vytvořili framework pro jednoduché vyhodnocení a trénování konvolučních neuronových sítí typu Faster R-CNN. Přetrénovali jsme sítě architektur VGG16 a ZFNet jak na našich interních datech z datasetu obětí, tak i na standartním KITTI datasetu. Dále jsme ukázali, že architektura VGG16 je o mnoho vhodnější k přetrénování pomocí dat, které pocházejí z málo rozdílných trénovacích a testovacích domén. Vytvořený framework může do budoucna sloužit jako výchozí bod pro budoucí vylepšení architektur tohoto typu.
In this thesis we created a framework for easy evaluation and training of Faster R-CNN type of networks. We fine-tuned VGG16 and ZFNet networks on our internal Victims dataset as well as standard KITTI dataset. We later showed that VGG16 architecture is far more suitable for fine-tuning on data from slightly different training and target domains. This framework can later serve as a baseline for further improvements in the field.
In this thesis we created a framework for easy evaluation and training of Faster R-CNN type of networks. We fine-tuned VGG16 and ZFNet networks on our internal Victims dataset as well as standard KITTI dataset. We later showed that VGG16 architecture is far more suitable for fine-tuning on data from slightly different training and target domains. This framework can later serve as a baseline for further improvements in the field.