ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Diplomové práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detekce anomalií v časových řadách pomocí pravděpodobnostních modelů a metod strojového učení

Probabilistic and Machine Learning Models for Anomaly Detection in Time Series Data

Typ dokumentu
diplomová práce
master thesis
Autor
Anna Husieva
Vedoucí práce
Šalanský Vojtěch
Oponent práce
Dedecius Kamil
Studijní obor
Znalostní inženýrství
Studijní program
Informatika
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato práce zkoumá účinnost pravděpodobnostních technik a technik strojového učení při detekci anomálií v časových řadách. Přehled příslušné literatury vytváří základ pro implementaci a vyhodnocení dvou pravděpodobnostních modelů a tří modelů strojového učení. Prostřednictvím experimentování na reálných i syntetických souborech dat jsou identifikovány silné a slabé stránky těchto modelů v různých typech anomálií. Je navržen a implementován hybridní přístup, který integruje prvky z pravděpodobnostních metod a metod strojového učení. Jeho účinnost při zvyšování výkonnosti detekce anomálií je dál posuzována.
 
This thesis examines the effectiveness of probabilistic and machine learning techniques in anomaly detection within time series data. A review of relevant literature lays the groundwork for implementing and evaluating two probabilistic and three machine learning models. Through rigorous experimentation on both real-world and synthetic datasets, the strengths and weaknesses of these models are identified across various anomaly types. A hybrid approach is proposed and implemented, integrating elements from both probabilistic and machine learning frameworks. Its efficacy in enhancing anomaly detection performance is assessed.
 
URI
http://hdl.handle.net/10467/114670
Zobrazit/otevřít
PLNY_TEXT (1.972Mb)
POSUDEK (50.41Kb)
POSUDEK (49.76Kb)
Kolekce
  • Diplomové práce - 18105 [232]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV