Improving atherosclerotic plaque segmentation and estimating their clinically relevant parameters

Zlepšení segmentace aterosklerotických plátů a odhad jejich klinicky relevantních parametrů

Supervisors

Reviewers

Editors

Other contributors

Journal Title

Journal ISSN

Volume Title

Publisher

České vysoké učení technické v Praze
Czech Technical University in Prague

Research Projects

Organizational Units

Journal Issue

Abstract

Cílem této práce bylo zlepšit segmentaci aterosklerotických plátů a na základě těchto zlepšených výsledků segmentace vyhodnotit jejich klinicky relevantní parametry. Pro naši segmentační úlohu jsme vybrali a upravili tři metody: ACNN, která kombinuje autoenkodér s klasickou segmentační sítí a metody MAAG a SeGAN inspirované GAN metodou. Tyto metody byly implementovány a upraveny pro naši datovou sadu 150 transverzálních ultrazvukových snímků. Metoda MAAG, využívající segmentátor U-Net a konvoluční autoenkodér, dosáhla nejvyšší průměrné hodnoty IoU 71,9\%. A MAAG dosáhla nejvyšší přesnosti 91,4\%. Samotná síť U-Net dosáhla průměrné hodnoty IoU 70\% a přesnosti 86,8\%. Segmentace vytvořené těmito modely byly použity pro metody odhadu parametrů, které klasifikovaly homogenitu s přesností 63\% a echogenitu s přesností 36\% a korelaci pro šířku pláště rovnou 0,46.

This thesis aimed to enhance the segmentation of atherosclerotic plaques and evaluate their clinically relevant parameters based on these improved segmentation results. We selected and adapted three methods for our segmentation task: ACNN, which combines an autoencoder with a classical segmentation network; MAAG, a GAN-inspired method for scribble annotations; and SeGAN also a GAN-inspired method. These methods were implemented and adjusted to our dataset of 150 transversal ultrasound images. The MAAG method, using a U-Net segmentor and a convolutional autoencoder, achieved the highest mean IoU of 71.9\%. And MAAG achieved highest accuracy of 91.4\%. U-Net alone reached a mean IoU of 70\% and an accuracy of 86.8\%.Segmentations produced by these models were used for the parameter estimation methods which classified homogeneity with accuracy of 63\% and echogenecity with accuracy of 36\% and plaque width correlation of 0.46.

Description

Citation

Endorsement

Review

Supplemented By

Referenced By