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Abstract
This thesis aimed to enhance the seg-
mentation of atherosclerotic plaques and
evaluate their clinically relevant param-
eters based on these improved segmen-
tation results. We selected and adapted
three methods for our segmentation task:
ACNN, which combines an autoencoder
with a classical segmentation network;
MAAG, a GAN-inspired method for scrib-
ble annotations; and SeGAN also a GAN-
inspired method. These methods were
implemented and adjusted to our dataset
of 150 transversal ultrasound images.
The MAAG method, using a U-Net seg-
mentor and a convolutional autoencoder,
achieved the highest mean IoU of 71.9%.
And MAAG achieved highest accuracy of
91.4%. U-Net alone reached a mean IoU
of 70% and an accuracy of 86.8%.

Segmentations produced by these mod-
els were used for the parameter estima-
tion methods which classified homogene-
ity with accuracy of 63% and echogenecity
with accuracy of 36% and plaque width
correlation of 0.46.

Keywords: Carotid artery stenosis,
Image segmentation, Anatomical Prior,
Generative Adversarial Network,
Convolutional Networks, Autoencoder

Supervisor: prof. Dr. Ing. Jan Kybic

Abstrakt
Cílem této práce bylo zlepšit segmen-
taci aterosklerotických plátů a na základě
těchto zlepšených výsledků segmentace vy-
hodnotit jejich klinicky relevantní parame-
try. Pro naši segmentační úlohu jsme vy-
brali a upravili tři metody: ACNN, která
kombinuje autoenkodér s klasickou seg-
mentační sítí a metody MAAG a SeGAN
inspirované GAN metodou. Tyto metody
byly implementovány a upraveny pro naši
datovou sadu 150 transverzálních ultra-
zvukových snímků. Metoda MAAG, vyu-
žívající segmentátor U-Net a konvoluční
autoenkodér, dosáhla nejvyšší průměrné
hodnoty IoU 71,9%. A MAAG dosáhla
nejvyšší přesnosti 91,4%. Samotná síť U-
Net dosáhla průměrné hodnoty IoU 70%
a přesnosti 86,8%.

Segmentace vytvořené těmito modely
byly použity pro metody odhadu para-
metrů, které klasifikovaly homogenitu s
přesností 63% a echogenitu s přesností
36% a korelaci pro šířku pláště rovnou
0,46.

Klíčová slova: Stenóza karotické tepny,
Segmentace obrazu, Anatomická
předloha, Generativní adversariální síť,
Konvoluční síť, Autoenkodér

Překlad názvu: Zlepšení segmentace
aterosklerotických plátů a odhad jejich
klinicky relevantních parametrů
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Chapter 1

Introduction

This thesis aims to address the challenge of enhancing the segmentation of
ultrasound images of the carotid artery, specifically the atherosclerotic plaque
and estimating their relevant parameters. Ultrasound imaging, a vital tool in
diagnosing vascular diseases, often faces limitations due to the quality of the
images as well as very expensive manual labeling, which is a challenging task
even for experienced medical professionals. Improved automatic segmentation
of these images is essential for accurate diagnosis and treatment planning.
Furthermore the estimation of relevant parameters from ultrasound medical
images is crucial to accurately diagnose and to predict future progress of
atherosclerotic plaques.

In this work we explore advanced image processing techniques and machine
learning algorithms, such as Autoencoders and Generative Adversarial Net-
works [16], in order to achieve more precise and reliable segmentations. We
also explore methods to reliably estimate clinically relevant parameters of the
atherosclerotic plaque images, which we will estimate from the segmentations
and using classification neural networks.

Outline of the Thesis

Chapter 2 describes the medical background of the atherosclerotic plaque
and stenosis. With this background we motivate the tasks of segmentation
and parameter estimation in the context of stenosis prediction. And describe
the available dataset of carotid ultrasound images.

Segmentation, classification and regression are well-studied topics in the
realm of computer imaging. In Chapter 3, we provide a review of the
literature for medical image segmentation with a focus on anatomical prior
and methods that take advantage of the prior. In Chapter 3, We also review
the classification and regression problems.

1



1. Introduction .....................................
In Chapter 4, we describe the methods and implementation details for the

task of segmentation and present the results.

In Chapter 5, we describe the methods and implementation details for the
task of parameter estimation and present the results.

In the last Chapter 6, we conclude the results.

2



Chapter 2

Motivation

2.1 Medical background

The vascular supply to the brain is provided by two main paired arteries, the
arteria carotis interna (ACI) and the arteria vertebralis, which join at the
base of the skull to form a circuit that supplies all parts of the brain.

The ACI supplies up to 85% of the blood to the brain and its narrowing
or stenosis, even a complete closure, can lead to very serious brain damage.
The most common cause of ACI stenosis is atherosclerosis, an inflammatory
disease that damages the inner layer of the blood vessel. In this disease,
fatty substances, primarily cholesterol, are deposited beneath the inner layer,
forming a so-called atherosclerotic plaque that arches into the interior of the
vessel and leads to its narrowing. This can then lead to restriction of blood
flow to the brain, complete blockage of the vessel, and even the development
of a stroke. Plaques that reduce the diameter of the vessel by at least 75%
are considered to be significant stenosis .

Besides fat and inflammatory cells, atherosclerotic plaques may contain
varying percentages of fibrin and calcium, which leads to the formation of
so-called calcifications. The more of these substances a plaque contains, the
more stable it is and it can grow inwards, leading to severe stenosis.

If it contains primarily fatty substances, it is an unstable atherosclerotic
plaque, which can break off and travel down the bloodstream to another
organ, leading to a blockage of the supplying artery and its damage.

Risk factors that influence the development of atherosclerosis include an
unhealthy lifestyle, high blood pressure, smoking, diabetes mellitus or other
metabolic diseases.

3



2. Motivation......................................

Figure 2.1: Scheme of the carotid with atherosclerotic plaque

2.2 Geometric and Non-Geometric parameters

The atherosclerotic plaques are defined by their geometric characteristics such
as shape, size, or width. Using the ultrasound imaging methods, we are able to
measure the parameters such as homogeneity, which characterizes uniformity
and consistency of tissue. Echogenicity which characterizes the ability of
tissue to reflect ultrasound waves. Calcification expresses the buildup of
calcium in the plaque. The surface of the plaque is characterized as smooth
or coarse. The plaque can also be ulcerated meaning, that the plaque has
developed an ulcer or a break in its surface.

According to [53] risk factors for atherosclerotic progression plaquesin
carotid arteries include: greater width of the atherosclerotic plaque corre-
sponding to the percentage of stenosis of the artery and uneven, or ulcerated
plaque surface.

2.3 Dataset

All of the datasets we will use in this thesis are derived from the ANTIQUE
dataset. The ANTIQUE dataset was developed as part of the study titled
“Atherosclerotic Plaque Characteristics Associated With a Progression Rate
of the Plaque in Carotids and a Risk of Stroke” [53] conducted between
2015 and 2020. This study involved 413 patients who were monitored at the
University Hospital Ostrava and the Military University Hospital in Prague.
The participants, aged between 30 and 90, were all diagnosed with stenosis
greater than 30%. The dataset, in its unprocessed form, comprises images
from individual patient examinations, totaling 1,322 exams and encompassing
28,178 ultrasound scans. Ultrasound scans are divided into four main types:
Longitudinal, Transversal, Conical and Doppler. We will work with the

4



....................................... 2.3. Dataset

transversal type, example can be seen at figure 2.2

Medical professionals evaluate the parameters of the ultrasound images,
these annotations contains are in their raw form available for 25765 images
that belong to 1321 patients. Experts evaluate the width of the atherosclerotic
plaque, homogeneity, echogenicity, type of surface, calcification the evaluation
also includes information about age, weight and other factors.

Figure 2.2: Transversal ultrasound image of carotid artery

5
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Chapter 3

Related Work

3.1 Segmentation

Segmentation is a fundamental task in computer vision. It refers to assigning
a class label to each pixel in the image. The purpose of the segmentation is to
divide the image into multiple semantic parts that represent the image in an
interpretable way. Segmentation is used in many fields such as autonomous
driving [8] and face recognition [22]. In medical imaging, the segmentation is
used to provide interpretable information and analysis for the medical images,
segmentation is used to localize and detect abnormalities such as tumors [38],
pathological tissue [3] or organs abnormalities [20].

3.1.1 U-Net

U-Net is a convolutional neural network architecture originally developed
for medical image in 2015 [40] particularly for segmenting cellular structures
in microscopic images. It is used as a benchmark method that most of the
works in medical image segmentation is compared to. U-Net is defined by
its U-shape architecture. This architecture allows U-Net to use high-level
features from deeper layers alongside low-level features from earlier layers,
resulting in precise and accurate segmentation, with ability to work with
limited amount of data which is a useful characteristic for medical images.

3.1.2 Anatomical Prior

An anatomical prior refers to the pre-existing knowledge about the structure
and typical arrangement of anatomical features within the human body. This

7



3. Related Work.....................................
prior information can be used to improve the segmentation and yield more
plausible and real segmentations. For medical image segmentation, the prior
is especially useful [35], as the shape and location of the organs veins and
other structures are given. Incorporating anatomical priors can be done by
various methods such as atlas models [2]. These methods have limitation in
handling the variation in human anatomy and are usually computationally
intensive for CPU’s.

The anatomical prior can also be incorporated into the deep learning meth-
ods, more specifically into convolutional neural networks. CNN’s overcome
the problem of generalization and can be effectively executed using GPU’s.
One strategy to employ anatomical prior in is to postprocess the images
using conditional random fields [9] this methods usually works with local
constraints limiting the global context. Other methods that are able to utilize
anatomical prior are frameworks using Autoencoders (AE) or Generative
Adversarial Networks (GAN) to constrain the segmentation.

3.1.3 Autoencoders and Convolutional Autoencoders

Autoencoders are a family of neural networks that learn efficient data en-
codings. The autoencoder consists of an encoder that compresses the input
into lower-dimensional latent space and a decoder that reconstructs it. The
autoencoders aim to minimize the difference between the input and output
images. For computer imaging methods is avantageous to use convolutional
layers in the autoencoders, creating a Convolutional Autoencoder (CAE).
In medical imaging the CAE’s can be used to denoise the images [15]. To
augment images [21] or to detect anomalies [43].

CAE Segmentation using autoencoders

Since the autoencoders learn compressed encoding, the reconstructed images
are more constrained in their shape and overall characteristics. One option is
to use autoencoders as a post-processing method [28]. The image is segmented
using a standard supervised segmentation algorithm and then the output is
processed to be more anatomically plausible using the autoencoder. Another
method [10] is to train Variational Autoencoder [24] and use part of the
weights in the segmentation network [10]. Another option [36] is to use
the encoding as a reguralizer, where the segmentation loss is joined by the
difference between encoding of the segmented image and encoding of the true
label.

8



.................................3.2. Parameter Estimation

3.1.4 Generative Adversarial Networks

Generative Adversarial Network (GAN) is a framework for training deep
learning networks proposed in 2014 by Goodfellow and his colleagues [16].
The architecture consists of two neural networks namely a generator and a
discriminator. The training process is inspired by game theory. These two nets
are trained simultaneously through adversarial processes. The generator’s
role is to create data that is indistinguishable from real data, while the
discriminator’s job is to distinguish between the generator’s fake data and
real data. The generator improves its ability to produce realistic data, and
the discriminator gets better at distinguishing between real and generated
data. GANs excel at generating realistic images. In medical imaging they
can be used to augment images and generate new realistic images [45].

Segmentation using GANs

GANs were previously successfully used in segmentation [47]. In medical
image segmentation, many research works are using the GANs framework
to improve segmentation [51]. Many different architectures are possible,
commonly in GAN setting the classic segmentation algorithm acts as a
generator and generates segmentations from the input images. Subsequently
these segmentations or masked images are fed into the discriminator, which
evaluates these segmentation. In [50] the Segmentor/Critic architecture is
proposed where the segmentor creates segmentations and the critic receives
masked images from these segmentations. Critic proudces a multi-scale vector
for real and for the fake segmentations. From these two vectors the mult-scale
L1 loss is computed. UENet [41] proposes an U-Net-like segmentor and E-
shapes discriminator. The advantage of GANs use in the segmentation task is
that it allows weak and semi-supervised methods in [49] both of these settings
are proposed using scribbles as weak segmentation labels and using unpaired
segmentations in unsupervised steps. More complex GAN architectures are
also used in medical image segmentation, such as pix2pix [42] or Wasserstein
GAN [19]

3.2 Parameter Estimation

To estimate the parameters using neural networks, we can think of it as a
classification or regression problem based on the estimated parameter. Due
to this, the classification and the regression task will be reviewed separately

9



3. Related Work.....................................
3.2.1 Classification

Image classification is a fundamental task in image processing, it involves
labeling images into predefined classes based on their characteristics. The
Deep learning methods, especially convolutional Neural Networks (CNN)
made an significant impact in the field. The ImageNet [11] benchmark is a
pivotal dataset in the field of image classification, consisting of millions of
labeled images across thousands of categories. The most influential CNNs
are AlexNet [27], VGG [44] notable for its deep architecture, and ResNet
[18], which introduced the concept of residual learning. In medical imaging,
the CNNs have been applied in many domains [7] such as predicting breast
cancer [48] or to diagnose pneumonia [52] or to diagnose COVID-19 from
X-Ray chest images [30].

3.2.2 Regression

Regression tasks using neural networks involve predicting continuous outcomes
based on input data. These tasks differ from classification tasks, which predict
discrete labels. Neural networks, particularly deep learning models, excel
at regression due to their ability to model complex, nonlinear relationships.
They are widely used in various fields, such as predicting financial trends
[6], forecasting weather [5], or to predict the age from the image [12]. The
difference between the regression and classification task is the output type
and the loss that is computed using different loss function most notably the
mean squared error (MSE) loss function is used.

3.2.3 ResNet

ResNet, short for Residual Network, is an influential neural network architec-
ture that was introduced in 2015 [18]. What sets ResNet apart is its novel use
of residual connections, which tackle the problem of vanishing gradients—a
significant challenge in training very deep networks [37]. This is achieved by
adding shortcut connections that skip one or more layers. The ResNet has
many variants specified by the number of convolutional layers ranging from
ResNet-18 to ResNet-152.

10



Chapter 4

Segmentation of carotid artery images

The image alone of the artery doesn’t provide details on the extent of the
stenosis and the characteristics of the plaque. To understand this, the carotid
image is segmented into four categories namely background tissue, lumen,
artery wall and the plaque.

4.1 Dataset

4.1.1 Fully Annotated dataset

Although the ANTIQUE dataset is fairly large, the Fully Annotated Dataset
(FA) consists of only 150 transverse and 150 longitudinal images. This is
due to the fact that the hand annotation of segments is a very difficult and
time-consuming process requiring strong medical expertise from highly trained
professionals.

As we can see on 4.1b the images of carotids are segmented into 4 segments:
Background is black, artery wall is red, atherosclerotic plaque is green and
lumen is blue.

11



4. Segmentation of carotid artery images..........................

(a) : Ultrasound image (b) : Segmentation label

Figure 4.1: Ultrasound images with paired segmentation annotation

4.1.2 Weakly annotated dataset

The ANTIQUE dataset contains a subset of images on which the plaque
width was measured by the professionals. They include a green mark with
dots denoting the width of the artery plaque 4.2a. Using these images weak
annotations were created assuming that the area around the line is plaque,
the area in front of the beginning of line segment is lumen, and the area
behind the end of the line segment is wall. We can see this weak annotation
in 4.2b.

(a) : Ultrasound image with
plaque width annotation

(b) : Image fused with the cre-
ated weak annotation

Figure 4.2: Ultrasound images with measured line of the plaque width and
image fused with the created weak annotation

In total we have 1393 transversal weak annotations available, paired with
the images. In order to not add additional information the green line segment
annotation is removed by performing image inpainting.

12



....................................... 4.1. Dataset

4.1.3 Preprocessing

We define two image preprocessing options for the fully annotated dataset.

First is the one used by M. Kostelanský [25] [26] we use it in order to be able
to compare our models to his results and to try more data preparation options.
Firstly the image and segmentations are cropped by the minimal bounding
box of the label segmentation, and then the cropped segmentation is padded
by 5 background pixels. This cropped image is than resized to size 256×256.
The advantage of this approach is that the image does not include irrelevant
areas. On the other hand, the negative is that we lose the information about
the absolute size of the image, and the reshaping coefficients of the x and y
axes are not the same. The underlying segmentation images varies in size
and scale therefore we call the dataset and models using this preprocesing as
Variable-Size.

The second option is to crop a fixed-size box around the segment, we call
this method Fix-Size. After inspection of the ultrasound images, we select the
size of the bounding box to 380×380, which fit most of the carotid arteries
and is of minimal size. Advantage of this approach is that it maintains the
scale. The con is that some of the carotids are small and the background
class is prevalent in the images.

The weak annotation dataset is cropped to the fixed size of 400×400, and
then, the center is cropped to the size of 380×380. Thus, it is of the same
scale as the fully annotated Fix-Size Dataset and the datasets can be used
together.

Figure 4.3: Segmentation and image produced by the Variable-Size preprocessing

13



4. Segmentation of carotid artery images..........................

Figure 4.4: Segmentation and image produced by the Fix-Size preprocessing

augmentation parameters

random rotation
p = 0.5
minimal angle = -10
maximal angle = 10

random contrast p = 0.5
random brightness p = 0.5
random horizontal flip p = 0.5

Table 4.1: Augmentations used for training

4.1.4 Augmentation

Augmentation is a technique used to enhance the diversity and volume of
training data, thereby improving the robustness and performance of the
models. In medical imaging, it is especially useful because of the limited
amount of data [14].

Applying to training set, we will augment the images by randomly adjusting
the brightness and contrast, then perform random rotation and random
horizontal flip of the image. Vertical flip will not be used as it is not invariant
for ultrasound images of carotid arteries. We summarize the augmentation in
Table 4.1.

4.2 Benchmark methods

In the segmentation part, we build on the master thesis of M. Kostelanský
[26] and article [25]. M. Kostelanský uses U-Net with cross-entropy loss (U-
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Net-CE) in the former case and U-Net with log-cosh dice loss and depth-wise
convolutional filter size (U-Net-Dice) in the later case. Some notable diffences
between his mnodels and the original U-Net are use of the PReLU activation
layers and padding to maintain the dimension of the input. He also uses
random dropout for the training.

We strictly follow his models implementation architecture details in both of
the cases and use part of his code for the benchmark methods. The exception
is the input size for U-Net-CE where he uses the size of 512x512, we unify
it to the size of 256x256.We also preserve the train/val/test split from the
master thesis.

4.3 Methods

Through the literature review, we selected from our knowledge, the most
suitable methods for segmentation applicable to our task. The methods
selected had been chosen by meeting following criteria. In the method
proposal they are superior to classical supervised method, methods are
universal and can be used for our ultrasound image domain, methods are
sufficiently different from each other in order to apply a broad spectrum of
methods for our segmentation problem.

The First method we selected is the method proposed in Anatomically
Constrained Neural Networks (ACNN) [36]. In the proposal paper this method
outperformed U-Net in the domain of 3D cardiac images. This method is
vastly universal and proposes the general training strategy, which can be
used with an arbitrary segmentation network. It gives us a free choice in the
selection of segmentation and autoencoder architectures for our specific task.

The second method we selected is proposed in Multiscale Adversarial
Attention Gates (MAAG) [49].This method outperformed U-Net on the
ACDC dataset [1]. We had chose this method as it allows us to use it in a
fully supervised setting and on top of that in a weakly supervised setting
with partial annotation, so-called scribbles.

For the last method, we selected SeGAN [50]. SeGAN is one of the first
GAN-inspired frameworks adapted specifically for the segmentation task that
produces superior segmentation results compared to the fully supervised
methods. In the paper, authors claim that It outperformed U-Net on several
metrics in the BRATS 2015 dataset [32].
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4. Segmentation of carotid artery images..........................
4.3.1 ACNN

Method overview

Motivation behind this method is the fact that the majority of existing
segmentation methods are supervised solely through a local loss function at
pixel level. To capture the global features they incorporate the shape prior
to the loss function. For this task, they propose an autoencoder model to
obtain a non-linear compact representation of the underlying anatomy. The
autoencoder network serves as a reguralizer for the segmentation network.
The overall framework proposed in the paper is depicted in figure 4.5

Figure 4.5: Training scheme of the ACNN method [36]

Segmentor

The loss function for the segmentor ϕ consist of two losses. The first Lx is the
supervised loss of the segmentor, for example, cross-entropy loss. The second
loss Lhe is a mean squared error (MSE) loss between the encoding of the label
segmentation and the encoding of the created segmentation. θs represents
the parameters of the segmentor, Lx is a loss function for the segmentor, y
is the target output, and λ is a weighting parameter for the MSE loss. θf

represents the parameters of the encoder part of the autoencoder. During
the experiments we observed that the MSE loss is usually larger than the CE
loss, We therefore used dynamical weighting of the MSE loss to maintain a
fixed ratio between the amplitudes. Additionaly the MSE loss is weighted by
hypermater k to set their contribution to the joint loss.

Lhe = ∥f(ϕ(x); θf ) − f(y; θf )∥2
2
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min
θs

Lx(ϕ(x; θs), y) + λ · Lhe

λ = k · ∥Lx∥
∥Lhe∥

As a segmentor network we used the U-Net-CE architecture from the
benchmark method.

Autoencoder

For training the autoencoder we have tried two approaches. First method is
to train the autoencoder in advance. In this approach we trained the autoen-
coder on the segmentation labels y using the cross-entropy loss function Lce.
Henceforth we took the trained encoder and used it in the segmentation model
training. We optimized the encoder parameters θf and decoder parameters
θg according to:

min
θf ,θg

Lce(y, g(f(y; θf ); θg))

The Second approach is to train the autoencoder and segmentation network
simultaneously. At each traning step autoencoder is updated first and then
the segmentor is updated second. This approach gives us the option to use
the created segmentation ŷ as a input to the autoencoder instead of the labels.
We optimized the autoencoder according to:

min
θf ,θg

Lce(y, g(f(ŷ; θf ); θg))

Autoencoder architectures

For the autoencoder network we constructed three different autoencoder
architectures. For the notation, we define C as a set of classes, and we define
encoding vector as v.

First autoencoder architecture is taken from the [17], where autoencoder
serves as an algorithm for clustering. It consist of 3 convolutional and one
linear layer in the encoder and linear layer and 3 transposed convolurional
layers in the decoder. Each layer is followed by the ReLu activation function.

17



4. Segmentation of carotid artery images..........................
Encoder 1

Input: 256 x 256 x |C|
conv5-32, stride = 2
conv5-64, stride = 2
conv3-128, stride = 2

FC-|v|

Decoder 1
FC-131072

Reshape 32×32×28
transpose-conv3-64, stride = 2
transpose-conv5-32, stride = 2
transpose-conv5-|C|, stride = 2

The second autoencoder architecture is inspired by the AlexNet [27]. The
encoder strictly copies architecture of the AlexNet classification network, only
the input and output layers are changed. The decoder has an inverted order of
encoder layers. Convolutional layers are replaced by transpose convolutional
layers and maxpooling layers are replaced by nearest neighbor upsampling
layers.

The third autoencoder is inspired by an autoncoder architecture used for
denoising medical images [15]. The encoder consist of 4 convolutional layers
each followed by ReLu activation function and Maxpooling layer. The last
layer is a fully-connected layer. In decoder convolutional layers are replaced by
transpose covolutional layers, and max-pooling is replaced by nearest-neighbor
upsampling.

encoder 3
Input: 256 x 256 x |C|

conv5-64
max-pool2, stride = 2

conv3-128
max-pool2, stride = 2

conv3-256
max-pool2, stride = 2

FC-|v|

18
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decoder 3
FC-65536

Reshape 16×6×256
transpose-conv3-256

Upsample 2x
transpose-conv3-128

Upsample 2x
transpose-conv3-64

Upsample 2x
transpose-conv5-|C|

Upsample 2x

4.3.2 MAAG

Method overview

The authors created the MAAG framework primarily for weak scribble an-
notations which is common setting for other segmentation methods [29],
however in the paper they have also showed that this framework can be
used with mixed annotations by combining scribbles with fully annotated
labels, which improved the results. We used this method in fully supervised
settings with segmentation labels paired to the images, and aditionally we
try mixed-supervision setting with available weak annotations.

The framework is trained as an adversarial game. It consists of segmentation
network and discriminator network. The discriminator is trained to learn
shape prior, and segmentor is trained to satisfy it. From images the segmentor
produces multi-scale output segmentation, which is then fed to the multi-
scale input discriminator. In the adversarial game the segmentor is trained
to produce realistic-looking segmentations and discriminator is trained to
correctly distinguish real annotations from the created segmentations. The
overall architecture is depicted in the image 4.6 taken from the method
proposal.

CNN architectures

For a segmentor we used the U-Net-CE architecture from the benchmark
method and modified it by adding attention gates to the decoder blocks. The
encoder part of the U-Net remained unchanged. In the decoder blocks, we
added adversarial attention gates following the description in the method
proposal. Each decoder block consist of two 3×3 convolutional layers pro-
ducing feautre map M (d) followed by a 1×1 convolutional layer creating soft
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4. Segmentation of carotid artery images..........................

Figure 4.6: Multi-scale segmentor/discriminator architecture from the MAAG
method[49]

segmentation that is used as input for the discriminator on the same depth
level and is also used as an attention-map which is then multiplied with the
M (d) using Hadamard product.

For a discriminator we strictly follow their implementation. Discriminator
consist of 4 blocks that receieves input from upper block and attention from
the segmentor on the same level. These two inputs are concatenated, then
downsampled through a convolutional layer with a 4×4 filter size, normalized
using spectral normalization [33] and then compressed using a 13 x 1 x
1 convolution network. Both convolutional layers use the tanh activation
function. To make the adversarial game harder for the discriminator we
flip the discriminator label with probability of 10% and also we apply the
Gaussian noise with zero mean and standard deviation of 0.2.

Training

We adjusted the training process to fit our segmentation task. The authors
worked with paired scribble annotations with images and unpaired segmenta-
tion masks and unpaired ultrasound images. The authors point out that the
segmentation masks can be obtained by different medical imaging methods,
therefore creatin new set of unpaired images where only the segmentation
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can be used. We have paired images with fully annotated segmentations as
well as set of different images paired with the weak segmentation labels.

For the paired images, we used supervised loss LSUP namely weighted
cross-entropy loss. Class weights are scaled based on the proportion of given
class.

Lsup =
[
−

c∑
i=1

wi · ysi · log(ŷi)
]

,

For the paired weak annotations, we used weak supervised loss Lweak

which is the same as the LSUP but computed only on the annotated pixels.
Unannotated pixels do not contribute to the loss.

In the adversarial game we minimize discriminator loss VLS(∆) and gener-
ator loss VLS(Σ) according to the Least Square GAN objective [31]

VLS(∆) = 1
2Ey∼y

[
(∆(y) − 1)2

]
+ 1

2Ex∼χ

[
(∆(Σ(x)) + 1)2

]
VLS(Σ) = 1

2Ex∼χ

[
(∆(Σ(x)) − 1)2

]
.

We train the models by iterating multiple steps. First we optimize
segmentor over batch of images paired with segmentations, we minimize
L = Lsup + a1

∥Lsup∥
∥VLS(Σ)∥VLS(Σ). The a1 is a hyperparameter that makes the

contribution of adversarial loss smaller as the adversarial loss only determine
the plausability of the shape. Secondly, we optimize the discriminator by
minimizing the discriminator loss a2VLS(∆). If we employ weak labels in the
training, then the third step is to optimize segmentor by minimizinng the
weak supervised loss a4Lweak.

4.3.3 SeGAN

Method overview

The authors propose SeGAN as a segmentation method inspired by the GAN
framework. In SeGAN segmentation network and critic network plays min-
max game where the segmentor is trying to minimize the loss and the critic
is trying to maximize the loss. In this training setting the segmentor and the
critic can be efficiently trained and SegAN can learn pixel dependencies on
multiple scales and thus learn local and global features.
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4. Segmentation of carotid artery images..........................
SeGAN is composed of a segmentor which is a U-Net style encoder/decoder

segmentation network. We followed the authors implementation and used a
network with 8 residual encoder blocks and 8 residual decoder blocks. Each
residual block consists of three convolutional layers each followed by batch
normalization and LeakyRelu layer.

The Critic has similar structure to the proposed segmentor decoder part.
The critic consists of multiple blocks. Each block produces output which is
then used as an input for the next block and is furthermore used directly in
the loss function. For the critic network we follow the authors implementation
of the individual blocks. Each nlock consist of convolutional layer, batch
normalization and leaky ReLu layer. We use critic architecture with 6 of
these blocks.

We choose the setting with one segmentor and a separate discriminator for
each class. This setting provides better results than setting with only one
discriminator and yields a comparable result to a setting with segmentor for
each class.

Training is performed in an alternating fashion where first the critic is
fixed and segmentor is trained and then the segmentor is fixed and the critic
is trained. We describe process a computing loss, firstly the segmentor S
produce a multi-class soft prediction map. Then for each class the image is
masked by the produced soft mask and is then fed to the critic C producing
hierarchical feature tensor fC(x). Afterwards the image is masked by the true
label map and fed to the critic which produces a hierarchical feature tensor
for label fC(x′). The loss lmae is a mean absolute error (MAE) between the
features defined as:

lmae(fc(x), fc(x′)) = 1
L

L∑
i=1

∥∥∥f i
c(x) − f i

c(x′)
∥∥∥

1

Where L is the number of critic layers, and f i
c(x) is the extracted feature

map of image x at the ith layer of C. While training the segmentor the
loss is minimized. In contrast when training discriminator the loss is then
maximized.

For the training of the segmentor we also explored the possibility of using
joint loss for the training. We try to add the supervised loss Lsup computed
directly from the segmentor output for example Dice-loss or cross-entropy
loss into the segmentor loss L = a1Lsup + Lmae.
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4.4 Experiments

In the experiments we train and evaluate models on the Fully Annotated
dataset (FA) of transverse images. In experiments we further divide this
dataset into variable size (FA-Variable-Size) and fixed size (FA-Fix-Size)
datasets according to section 4.1.3. For both options 75 images are used for
training, 25 for validation and 50 for testing. First we will focus on each
method experiments and then we present overall results.

For the evaluation we compute Intersection over Union (IoU) for all classes
and also mean IoU over classes (mIoU), also Dice Score over all classes
and mean Dice Score. And we compute the overall pixel accuracy of the
segmentations.

4.4.1 ACNN

In ACNN we train both the autoencoder and segmentor using ADAM opti-
mizer [23] with beta1 = 0.5 and beta2 = 0.5, batch size = 2 and learning rate
equal to 10e−4 for the segmentor we also use weight decay equal to 10e−3.
We use scheduler that reduce the lr on plateau with patience 25 epochs. And
we train for 300 epochs.

In the experiments we determine best autoencoder, optimal encoding size
for the autoencoder and decide whether is it better to train autoencoder
before the segmentor or simultaneously.

In first experiment we try different autoencoder architectures amd determine
the best. For this experiment we use FA-fix dataset and encoding size
equal to 256 and we train the autoencoder before segmentor. According to
experiment best performing autoencoder is the deep clustering autoencder
(mIoU = 0.681) surpasing denoising autoencoder (mIoU = 0.668) and the
alexnet inspired autoencoder (accuracy = 0.666).

For the encoding vector size we tried sizes of 32, 64,128,256 and 512.
Optimal encoding vector size for our use case is 256 4.2, authors of ACNN [36]
use size of 64, we think that we need bigger encoding size as the segmentation
maps of carotids artery varies more than the segmentation maps of abdomen
with fixed position of organs and more rigid overall structure.
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Encoding Size mIoU

32 0.669
64 0.672
128 0.675
256 0.681
512 0.670

Table 4.2: Table of encoding sizes and corresponding mIoU values

Autoencoder

We inspect whether the autoencoder is able to learn the lower-dimensional
representation on the space of segmentation labels. In figure 4.7 we plot input
and output of the denoise clustering autoencoder after training separately
the autoencoder. We can see that the autoencoder is able to learn the
lower-dimensional representation.

Figure 4.7: Input and output of trained autoencoder

We also plot how the autoencoder works during the training of segmentor.
On figure 4.8 we show the segmentation output, output of the autoencoder
performing the encoding on the segmentator output and lastly the label.
We can see that the autoencoder normalizes the segmentation and output
more plausible result. We observe that these results are more plausible but
also loose some information about location, thus is important to overweight
the MSE loss between encodings in the joint segmentor loss. During the
experiments we observed that making the MSE loss one magnitude smaller
which is specified in the method proposal works well.
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(a) : AE Input (b) : AE ouput (c) : True segmentation

Figure 4.8: Created segmentation as input to autoencoder, output of autoencoder
and true label

4.4.2 MAAG

In MAAG we train both the segmentor/generator and discriminator using
ADAM optimizer [23] with beta1 = 0.5 and beta2 = 0.5, batch size = 2 and
learning rate equal to 10e−4 for the segmentor we also use weight decay equal
to 10e−3. In the choice of scheduler we follow method proposal and use cyclic
learning rate [46].

We observe that with loss weights coefficients set as in the method proposal
the segmentation outputs are very similar to each other, thus the shape
constraint is too large. This result is expected as our setting uses full
annotations which includes shape information in contrary to the scriblle
setting with very little shape information. To surpress the shape prior we set
the a3 coefficient to be equal to 0.1 giving best.

Now we evaluate the addition of weak annotations into the framework, we
take two identical settings and compare the results as we can see on table 4.3
weak segmentations slightly improve the results.

metric with WA no WA
mIoU 0.68 0.66
accuracy 0.93 0.91

Table 4.3: Test results on MAAG with and without addition of weak annotations

4.4.3 SeGAN

For SeGAN we innitialy tried to use the same optimizer settings as in the
previous two cases, but we were unable to train the model, The critic was
too succesful at maximizing the loss and the loss after few epochs exploded.
We manage to train the model using RMSprop optimizer with learning rate
= 0.00002 and crucially with bigger batch size of 8.
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First hyperparameter we tune is the weight of the additional dice loss that

is joint for the final segmentor loss with the L1 loss. We select the weight a1
to 0.5. For showing that the whole adversarial setting results in improvement,
we also try using only the supervised loss effectively removing the whole critic
part. The mIoU of 0.649 is worse than the setting including critic with mIoU
of 0.681

In the SeGAN paper authors show that the Segmentor/Critic architecture
with L1 loss can be trained, in the proof the assume that the weights are
clamped. We try different clamping ranges, of the discriminators weights,
in experiments we observe that with some combinations of batch size and
clamping range one of the discriminator (ussually for lumen class) exploded
and the produced loss was extremely high. We find that restricting the
discriminator weights between -0.05 and 0.05 results in relatively stable
training.

4.4.4 Results

In the tables 4.4 4.5 we can see results for all the methods namely U-Net
with cross-entropy loss function U-Net used in paper [25], ACNN segmentor
autoencoder framework, MAAG segmentor discriminator framework and
SeGAN segmentor/critic network.

metric U-Net CE U-Net-Dice ACNN MAAG SeGAN
mIoU 0.683 0.700 0.719 0.714 0.681
IoU - background 0.861 0.853 0.862 0.858 0.807
IoU - wall 0.570 0.573 0.604 0.602 0.528
IoU - plaque 0.447 0.519 0.549 0.535 0.529
IoU - lumen 0.851 0.859 0.859 0.860 0.858
accuracy 0.867 0.868 0.875 0.914 0.848

Table 4.4: Test results for all the methods on the Fully Annotated Variable-Size
dataset

metric U-Net-CE U-Net-Dice ACNN MAAG SeGAN
mIoU 0.641 0.665 0.681 0.681 0.676
IoU - background 0.953 0.955 0.952 0.947 0.957
IoU - wall 0.449 0.477 0.500 0.492 0.471
IoU - plaque 0.357 0.415 0.461 0.482 0.441
IoU - lumen 0.806 0.816 0.812 0.804 0.834
accuracy 0.930 0.935 0.936 0.930 0.937

Table 4.5: Test results for all the methods on the Fully Annotated Variable-Size
dataset

When presenting results we have to state that we do not do much of
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hyperparameter tuning for the U-Net benchmark methods. We took the
existing implementation by M. Kostelansky who used it on slightly different
datasets. We can see that for the FA-Variable-Size the ACNN achieves
best mIoU and best IoU for almost all classes, best accuracy is achieved by
the MAAG. SeGAN does not achieves such results, as we can see on 4.9f
the SegGAN produces least homonogeous segmentation this applies to the
majority of the test images. We provide all the test prediction visualizations
in the supplementary materials.

For the FA-fix dataset the ACNN and MAAG shows highest mIoU and
SeGAN shows highest accuracy. For this dataset the accuracy is slightly
missleading as the background class is very prevalent thus the IoU is a more
suitable metric. When inspecting the results the segmentation algorithms are
able to correctly segment images where the carotid is easily detectable 4.10
but at a small amount of cases the algorithm mistakes the surroundings for
the carotid segments 4.11.
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(a) : Label (b) : U-Net CE loss

(c) : U-Net log-cosh Dice loss (d) : ACNN

(e) : MAAG (f) : SeGAN

Figure 4.9: Produced segmentations by all the methods on the Variable-Size
dataset
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Figure 4.10: ACNN Segmentation with high accuracy

Figure 4.11: ACNN Segmentation with low accuracy
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Chapter 5

Parameter Estimation

In the second task we try to estimate the parameters of the carotid plaques. As
described in the section 2.2 we have available expert annotaions for geometric
and non-geometric parameters. We use the created segmentations alongside
the ultrasound images to predict these parameters. We use classification
CNNs for this task, some of the parameters we also try to directly compute
from the segmentations.

5.1 Dataset

From the ANTIQUE dataset we use the subset of images on which were
performed the manual measurement of the plaque, for those images we have
available the expert evaluation of multiple parameters. These images are
recognizable by the green measurement marks which were produced during
the measuring. We name this dataset of 1316 images as Key-Image Dataset.
In the following section we describe the whole preprocessing pipeline to obtain
suitable image segmentation pairs for estimating the parameters using CNN
models and direct computation.

5.1.1 Preprocessing

The images from the Key-Image Dataset are containing information about
the whole ultrasound scan not only the carotid and close surroundings. First
step is to localize the carotid. We use the Faster R-CNN [39] model which
was trained by M. Kostelansky to localize the carotid [25]. This localization
net returns the bounding box and the carotid probability score. We discard
all the images where the R-CNN outputs class probability score of carotid
lesser then 0.9.
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Processing pipeline continue with the segmentation of the localized images.

In the previous chapter we trained the segmentation networks on the Fixed-
Size dataset and the Variable-Size dataset. We utilize models trained on both
of the datasets. For the model trained on Variable-Size dataset we crop the
image directly using the bounding box obtained by the localization network.
For the model trained on the Fix-Size dataset we pad or crop the bounding
box in order to be of size 380×380. The final processed Key-Image dataset
of ultrasound images paired with the created segmentations consists of 1528
images.

Figure 5.1: Preprocessing pipeline for Variable-Size segmentation models

5.2 Methods

We divide the parameters into two categories. First are the non-geometric
parameters including homogenecity and echogenicity. These parameters are
categorical. homogeneity has two possible characterizations, homogeneous
and heterogeneous. Echogenicity is categorized into four classes.

Second group are the geometric parameters including only the plaque-width.
Plaque-width is defined by the scalar value defining the width of the plaque
segment.
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5.2.1 CNN models for parameter estimation

We use a CNN models to estimate the parameters from the images with
segmentations. We use ResNet as a backbone network, for categorical variables
we use cross-entropy loss and for the scalar values we use Mean-Squared loss.

As a CNN classification network backbone we use ResNet18, we find out
that this network is sufficiently complex and larger versions of ReNet are too
complex for our task, leads to overfitting and the additional computational
cost is not justified by the better performance.

ResNet and other classification methods usually take only single input.
We have available images and segmentations, we try different approaches to
use both images and segmentations to predict the parameters, we construct
different versions of the network to combine the inputs.

Input merge model

First option is to combine the images with segmentations on the input
layer of the ResNet network. This is the ussual architecture for supervised
classification networks. In the ResNet architecture we only change the input
layer channels. To combine the pairs we try these combinations:

. Plaque Mask - Mask ultrasound mage by the plaque segment. The
resulting input tensor dimension is (height, width, 1). Concatenation - Concatenate the image with the 4-class segmentation.
The resulting The resulting input tensor dimension is (height, width, 4)

Figure 5.2: Masked plaque image
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Middle layer merge model

Second method is to combine the segmentation and image at a deeper layer.
This model is inspired by the [34] and [13]. The multiple inputs are processed
separately in its own pipes, at defined inner layer they are merged and further
processed combined.

In the used ResNet18 model we choose to process the images and segmen-
tations separately first five layers, in the sixth layer we concatenate both
tensors over the channel dimension and the concatenated tensor is processed
by the remaining layers. We also try to process the image separately and in
the sixth layer to mask it by separately processed plaque-mask from the other.
Subsequently this masked tensor is processed by the rest of the network.

5.3 Experiments

5.3.1 Non-geometric parameters

For the non-geometric parameters we estimate echogenicity and homogeneity
using the classification CNN models. We use the Adam optimizer with learning
rate 5e−6 weight decay 5e−5 and batch size 2. Every ten epochs the learning
rate is divided by 10. We train for 30 epochs. We use the cross-entropy
with weights that proportionally give more weights to the underrepresented
classes. In the dataset the homogeneity has classes of cardinality 442 and
1004 and the echogenicity of 283, 394, 477, 292. We also try to undersample
the dataset but that approach gave inferior results.

For the experiments we take 80% images for training, 10% for validating
and 10% for testing. We use the same augmentations as for the segmentation
task 4.1.

Determine best segmentation option

In the first experiment we determine which set of the created segmentations,
results in best classification. The more accurate the segmentations the more
accurate should be the classification because the classification model recieves
correct information which part is plaque whose parameters are estimated.
For this experiment we use the architecture which concatenate the image and
segmentation at the start of the model. The results for this experiment are
shown at table 5.1 as we can see the model was unable to achieve satisfying
result for two-class homogeneity classification and for four-class echogenicity
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classification.

Segmentation model Homogenecity accuracy echogenicity accuracy
Fix-Size

U-Net 0.5 0.31
ACNN 0.63 0.31
MAAG 0.63 0.36
SeGAN 0.61 0.29

Variable-Size
U-Net 0.57 0.24
ACNN 0.57 0.36
MAAG 0.56 0.31
SeGAN 0.56 0.36

Table 5.1: Classification of non-geometric parameters using Input Merge model,
comparing different segmentation models.

Determine the best model option

In the second experiment we evaluate different multi-input models we have
constructed four varying options:

. Start Concatenate - Input Merge model concatenating segmentation and
image at the start of the network. Start Mask - Input Merge model masking image by plaque segment at
the start of the network.Middle Concatenate - Middle Merge model processing separately image
and segmentation and concatenating their feature maps in the middle of
the network.Middle Mask - Middle Merge model processing separately image and
plaque mask and multiplying their feature maps in the middle of the
network

We run this experiment using the segmentations created by the Fix-Size
ACNN, which achieved best result in the previous experiment. In the table
5.2 we can see that the Start Concatenate model gives best but unsatisfactory
results.

Result discussion

The problem with the low accuracies for homogeneity and echogenicity is
most likely not caused by the classification model but by the inacurate
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Segmentation model Homogenecity accuracy echogenicity accuracy
Start Concatenate 0.63 0.36
Start Mask 0.49 0.29
Middle Concatenate 0.52 0.31
Middle Mask 0.56 0.34

Table 5.2: Results for classification of non-geometric parameters using different
input pair combinations

segmentations of the plaque. The echogenicity is ability to bounce an echo so
the pixels defining the plaque should be brighter for higher echogenicity class,
as we can see from table 5.3a it is just partially true for the plaque segments
proposed by the Fix-Size ACNN segmentor, the highest echogenicity class
images do not have the highest average intensity of the plaque segment. In
the homogeneity, heterogeneous class (non-homogeneous) refers to a structure
with dissimilar components or elements 1, and homogeneous to the opposite.
In theory the heterogenous plaques should have higher standard deviation
of the intensity values. We plot the standard deviation of intensity values
on figure 5.3b we see that the intensity standard deviations are not much
different.

(a) : Boxplot of mean intensity
values for plaque pixels over the
echogenicity classes

(b) : Boxplot of standard deviation
intensity values for plaque pixels over
the homogeneity classes

Experiments on synthetic dataset

In order to verify that the models are able to learn the features, we constuct
a synthetic dataset. In the synthetic dataset we can be sure that there is no
error and disturbance in the label annotaions thus the segmentation matches
the actual segment. On the synthetic images we evaluate echogenicity which
in our opionion can be modeled better by synthetic dataset. We model
the different echogenicity classes with different means for pixel intensity
generation of plaque segment.

1https://radiopaedia.org/articles/heterogeneous-vs-heterogenous
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We create synthetic images following these steps. First step is to create
and underlying segmentation. Random ellipse is created. This random ellipse
represents the lumen and wall. Then the second ellipse within the first ellipse
is created representing the plaque. Then the whole image is randomly rotated.
Lastly, elastic transformation and grid distortion are performed. Next step is
to create the image from the segmentation. To create random images from
the created segmentation we sample the intensity of pixels from a normal
distribution. Pixels from each segment are sampled from a distribution with
a different mean and standard deviation. The last step is to apply Gaussian
filter to smooth the image. For the different echogenicity classes we sample
the plaque intensities with different means of the normal distributions. We
show the created synthetic images and segmentation on figure 5.4

(a) : Synthetic segmentaion (b) : Synthetic image

Figure 5.4: Created synthetic segmentation and image

We crated in total 1000 random synthetic images, 250 for each class. We
present the synthetic echogenicity results on table

Segmentation model Echogenecity accuracy
Start Concatenate 0.86
Start Mask 0.93
Middle Concatenate 0.19
Middle Mask 0.46

Table 5.3: Results for classification of synthetic echogenicity using different
models

5.3.2 Geometric parameters

We can directly compute the plaque width from the segmentation we formulate
the plaque width as the maximal distance over all the minimal distances from
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each green pixel to any blue pixel, defined as:

max
gi∈G

(
min
bj∈B

d(gi, bj)
)

We compute it more efficiently using the KD-tree [4]. The created line
denoting the width can be seen on 5.5. The computed width is in the pixels
but the annotation is in milimiters. We use approximation that 1cm is equal
to 172pixels based on the scale present in the raw images.

Figure 5.5: Width of the plaque denoted by white line

We try both the Fix-Size and Variable-Size datasets to compute the width,
the Fix-Size has advantage that the resulting distance is indeed the factual
distance in pixels. The Variable-Size images are not squares and are not of
uniform size, thus the distance have to be scaled according to the difference
between the image size and the segmentor output size. The advantage and
reason why we use the Variable-Size datasets, is that it gives has superior
IoU for the plaque class 4.4 observed during the segmentation training and
testing process

We evaluate segmentations created by all the methods specified in the
segmentation chapter. We use the mean absolute error (MAE) and the Pearson
correlation coefficient. We show the results at table 5.4 for Variable-Size
models and 5.5 for Fix-Size models

metric U-Net ACNN MAAG SeGAN
Pearson 0.226 0.279 0.247 0.200
MAE 1.6 1.58 1.66 1.52

Table 5.4: Results for direct computation of the plaque width with Variable-Size
setting
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metric U-Net ACNN MAAG SeGAN
Pearson 0.277 0.154 0.461 0.03
MAE 1.2 1.6 0.9 1.2

Table 5.5: Results for direct computation of the plaque width with Fix-Size
setting
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Chapter 6

Conclusion

The objective of this thesis was to improve the segmentation of the atheroscle-
rotic plaques and evaluate their clinically relevant parameters based on the
improved segmentation maps. During the literature review, we focused on
the deep learning methods that use the anatomical prior to improve the
segmentation results, mainly on autoencoders (AE) and generative adver-
sarial networks (GAN). We have selected three suitable methods for our
segmentation problem. The first was ACNN [36], which adds an autoencoder
regularization network on top of the classical segmentation network. The
second was MAAG [49], which is a GAN-inspired method for scribble annota-
tions, which we used in a fully supervised setting. Lastly, SeGAN [50] was
chosen as the third method. We implemented those methods, adjusting them
for our setting. On the available dataset of 150 transversal ultrasound images,
we have achieved a maximum mean IoU of 71.9% using the MAAG method
with a U-Net segmentor and a convolutional autoencoder. The MAAG frame-
work, using and adjusted U-Net segmentor, achieved the highest pixel-wise
accuracy of 91.4%. In our settings, U-Net achieved a mean IoU of 70% and
an accuracy of 86.8%. We have used all the models to produce segmentations
on the key images, on which we have evaluated parameters by the medical
professionals. We used the created segmentations alongside the images to
estimate the parameters. Although the segmentation was slightly improved,
it was not enough to reliably automatically estimate parameters. We tried to
estimate non-geometric parameters of homogeneity and echogenicity using a
classification network. Furthermore, we implemented several versions of the
ResNet18 network, combining the input images with segmentations. The best
result was achieved on a segmentation created by MAAG with an accuracy of
63% for homogeneity and 36% for echogenicity. The width of the plaque was
directly computed from the created segmentations, and notably, the highest
Pearson correlation coefficient of 0.46 was attained from the segmentation
generated by the MAAG network. Although we slightly improved the segmen-
tation results, they are still too inaccurate to be used for a reliable evaluation
of the parameters.
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Appendix A

Segmentation experiment plots

We show plots related to segmentation experiments. We choose to separate
them from the main experiments to avoid clutter. We show the training and
validation losses in A.1 and validation IoUs for all classes after each training
step in A.2

We show training and validation loss for the segmentation methods also
we show validation mIoU and mean Dice score over the epochs.
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A. Segmentation experiment plots.............................

(a) : ACNN train validation graphs

(b) : MAAG train validation graphs

(c) : SeGAN train validation graphs

Figure A.1: Training and validation losses for FA-fix dataset
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............................. A. Segmentation experiment plots

(a) : ACNN IoU for classes

(b) : MAAG IoU for classes

(c) : SeGAN IoU for classes

Figure A.2: Graph of validation IoUs for all classes over the epochs for FA-fix
dataset
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Appendix B

Implementation details

The project was implemented in the programming language Python and deep
learning library PyTorch Code is available on GitLab. And the results and
models are available on Google Drive Google Drive.

For the SeGAN method we used and adjusted pytorch code from the au-
thor’s repository1. For the MAAG we reimplemented the author’s repository2

from Tensorflow to PyTorch. For the U-Net benchmarks we used the models
from this repository3 and for the generation of synthetic dataset we adjusted
the method from this repository4.

1https://github.com/YuanXue1993/SegAN
2https://github.com/gvalvano/multiscale-adversarial-attention-gates
3https://github.com/kostelansky17/carotids
4https://gitlab.fel.cvut.cz/morozart/bachelor-thesis
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