Show simple item record

Recognition of extremist texts



dc.contributor.advisorSmítková Janků Ladislava
dc.contributor.authorPavlína Pokorová
dc.date.accessioned2022-08-25T22:52:51Z
dc.date.available2022-08-25T22:52:51Z
dc.date.issued2022-08-25
dc.identifierKOS-1065790654705
dc.identifier.urihttp://hdl.handle.net/10467/103394
dc.description.abstractTato práce je zaměřena na rozpoznávání extremistických textů s využitím modelů supervizovaného strojového učení. Cílem je vytvoření klasifikačního systému schopného detekovat vybrané druhy extremistických textů. V rámci této práce byly vytvořeny tři různé datasety českých textů, přičemž extremistický dataset obsahuje zejména neonacistické a nacistické texty. Navržený klasifikační systém vytváří predikce na základě váženého hlasování několika dílčích klasifikátorů. Tyto klasifikátory byly vytvořeny pomocí implementovaného trénovacího programu. Vhodné kombinace metod pro tvorbu klasifikátorů byly vybrány na základě provedených experimentů. Při těchto experimentech byla odhadována úspěšnost klasifikace textu v závislosti na použitých metodách pro předzpracování textu a extrakci příznaků. Pro klasifikaci textu byly využity dva různé klasifikační modely, SVM a Random forest. Přesnost výsledného klasifikačního systému je odhadována na 85 \%.cze
dc.description.abstractThe focus of this thesis is recognition of extremist texts using supervised machine learning models. The goal is to create a classification system capable of specific extremist text detection. Three different datasets were created in this thesis, with the extremist one being focused mainly on nazi and neo-nazi texts. Proposed classification system creates predictions based on weighted votes of partial classificators. These classificators were created using an implemented training program. Appropriate combinations of methods for their creation were chosen based on performed experiments. In these experiments classification success rate was estimated based on used text preprocessing method and feature extraction method. Two classification models were used for text classification, specifically SVM and Random forest. Accuracy of the final classification system is estimated to be 85 \%.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectextremismuscze
dc.subjectklasifikace textucze
dc.subjectstrojové učenícze
dc.subjectzpracování přirozeného jazykacze
dc.subjectextrakce příznakůcze
dc.subjectladění hyperparametrůcze
dc.subjectrandom forestcze
dc.subjectsupport vector machinecze
dc.subjectextremismeng
dc.subjecttext classificationeng
dc.subjectmachine learningeng
dc.subjectnatural language processingeng
dc.subjectfeature extractioneng
dc.subjecthyperparameter tuningeng
dc.subjectrandom foresteng
dc.subjectsupport vector machineeng
dc.titleRozpoznávání extremistických textůcze
dc.titleRecognition of extremist textseng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeJiřina Marcel
theses.degree.disciplineZnalostní inženýrstvícze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatika 2009cze


Files in this item




This item appears in the following Collection(s)

Show simple item record