ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Departments
  • Department of Applied Mathematics
  • Bachelor Theses - 18105
  • View Item
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Departments
  • Department of Applied Mathematics
  • Bachelor Theses - 18105
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rozpoznávání extremistických textů

Recognition of extremist texts

Type of document
bakalářská práce
bachelor thesis
Author
Pavlína Pokorová
Supervisor
Smítková Janků Ladislava
Opponent
Jiřina Marcel
Field of study
Znalostní inženýrství
Study program
Informatika 2009
Institutions assigning rank
katedra aplikované matematiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Tato práce je zaměřena na rozpoznávání extremistických textů s využitím modelů supervizovaného strojového učení. Cílem je vytvoření klasifikačního systému schopného detekovat vybrané druhy extremistických textů. V rámci této práce byly vytvořeny tři různé datasety českých textů, přičemž extremistický dataset obsahuje zejména neonacistické a nacistické texty. Navržený klasifikační systém vytváří predikce na základě váženého hlasování několika dílčích klasifikátorů. Tyto klasifikátory byly vytvořeny pomocí implementovaného trénovacího programu. Vhodné kombinace metod pro tvorbu klasifikátorů byly vybrány na základě provedených experimentů. Při těchto experimentech byla odhadována úspěšnost klasifikace textu v závislosti na použitých metodách pro předzpracování textu a extrakci příznaků. Pro klasifikaci textu byly využity dva různé klasifikační modely, SVM a Random forest. Přesnost výsledného klasifikačního systému je odhadována na 85 \%.
 
The focus of this thesis is recognition of extremist texts using supervised machine learning models. The goal is to create a classification system capable of specific extremist text detection. Three different datasets were created in this thesis, with the extremist one being focused mainly on nazi and neo-nazi texts. Proposed classification system creates predictions based on weighted votes of partial classificators. These classificators were created using an implemented training program. Appropriate combinations of methods for their creation were chosen based on performed experiments. In these experiments classification success rate was estimated based on used text preprocessing method and feature extraction method. Two classification models were used for text classification, specifically SVM and Random forest. Accuracy of the final classification system is estimated to be 85 \%.
 
URI
http://hdl.handle.net/10467/103394
View/Open
POSUDEK (49.04Kb)
POSUDEK (49.39Kb)
PLNY_TEXT (517.7Kb)
Collections
  • Bakalářské práce - 18105 [369]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV