Zobrazit minimální záznam

Optimization of the use of traditional segmentation algorithms for defect detection tasks in industry



dc.contributor.advisorNovák Jakub
dc.contributor.authorJiří Szkandera
dc.date.accessioned2022-06-09T22:55:03Z
dc.date.available2022-06-09T22:55:03Z
dc.date.issued2022-06-09
dc.identifierKOS-1065790719305
dc.identifier.urihttp://hdl.handle.net/10467/101666
dc.description.abstractPráce porovnává algoritmy určené k segmentaci objektu v obraze. Porovnány jsou tři algoritmy řadící se do kategorie superpixels (felzenszwalb, SLIC a quickshift), dva zástupci active contour models (snakes a level sets), random walker, region adjacency graphs a Otsu prahování. K tomuto účelu jsou zmapovány defekty objevující se v průmyslu. Nad defekty je vytvořena obecnější kategorizace. Následně jsou z každé kategorie vybrány dvě vady. Na první vadě je nalezena vhodná kombinace parametrů. U hledání jsou zohledněny efekty různého předzpracování a reprezentace snímku pomocí odlišných barevných prostorů. S nalezenými parametry je provedena segmentace druhé vady. Tak je otestována schopnost generalizace a vhodnost použití algoritmu pro vady dané kategorie. Úspěšnost segmentace je měřena metrikou IOU. Úspěšnější algoritmy dosáhly průměrného IOU měřeného přes všechny snímky jedné vady 90 %. U testu generalizace bylo v některých případech dosaženo průměrného IOU 53 %.cze
dc.description.abstractThe paper compares algorithms designed for image segmentation. Three algorithms belonging to the category of superpixels (felzenszwalb, SLIC and quickshift), two representatives of active contour models (snakes and level sets), random walker, region adjacency graphs and Otsu thresholding are compared. For this purpose, defects appearing in the industry are described. A more general categorization splitting defects into groups is made. Subsequently, two defects are selected from each category. A suitable combination of algorithm parameters is found on the first defect. Different preprocessing and color representation of the image are accounted for when the search is carried out. With the found parameters, a segmentation of the second defect is performed. Thus, the generalization capability and the suitability of the algorithm for the defects of the given category are tested. The success of the segmentation is measured by the IOU metric. The more successful algorithms achieved an average IOU measured over all images of a single defect of 90 %. In generalization test an average IOU of 53 % was achieved in some cases.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectporovnání algoritmůcze
dc.subjectsegmentace objektůcze
dc.subjectdetekce defektůcze
dc.subjectzpracování obrazucze
dc.subjectstrojové viděnícze
dc.subjectactive contourcze
dc.subjectrandom walkercze
dc.subjectsuperpixelscze
dc.subjectregion adjacency grafycze
dc.subjectprahování Otsucze
dc.subjectalgorithm comparisoneng
dc.subjectobject segmentationeng
dc.subjectdefect detectioneng
dc.subjectimage processingeng
dc.subjectcomputer visioneng
dc.subjectactive contoureng
dc.subjectrandom walkereng
dc.subjectsuperpixelseng
dc.subjectregion adjacency graphseng
dc.subjectOtsu thresholdingeng
dc.titleOptimalizace využití tradičních segmentačních algoritmů pro úlohy detekce defektů v průmyslucze
dc.titleOptimization of the use of traditional segmentation algorithms for defect detection tasks in industryeng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeČepek Miroslav
theses.degree.disciplineZnalostní inženýrstvícze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatika 2009cze


Soubory tohoto záznamu




Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam