ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Učení modelu zesilovače hudebního nástroje pomocí neuronových sítí

Learning the Musical Instrument Amplifier Model with Neural Networks

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Jakub Lukeš
Vedoucí práce
Vacek Patrik
Oponent práce
Hurych David
Studijní obor
Informatika a počítačové vědy
Studijní program
Otevřená informatika
Instituce přidělující hodnost
katedra kybernetiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Kytarové zesilovače hrají klíčovou roli v rockové hudbě kvůli tzv. overdrive a jiným efektům, které jsou unikátní pro každý model. Představují zásadní investici do vybavení hudebníků, především pokud se jedná o elektronkové modely. Tato práce zkoumá možnost učení a emulace libovolného kytarového zesilovače pomocí umělých neuronových sítí. Byly implementovány jedna rekurentní jedna konvoluční neuronová síť, které poté byly trénovány na skutečných kytarových nahrávkách. Jejich přesnost pak byla vyhodnocena objektivně i pomocí poslechových testů. Výsledky ukazují, že představené neuronové sítě dokáží věrně napodobit overdrive efekt jen s drobnými nedokonalostmi. Tato práce se nevěnovala použití v reálném čase, výsledky ale mohou najít uplatnění v postprodukci.
 
Guitar amplifiers play a key role in rock music because of the overdrive and other effects unique to each model. They are a costly piece of musical equipment, especially when considering the vacuum valve models. This work explores the options to learn and emulate any guitar amplifier using artificial neural networks. One recurrent and one convolutional neural network architectures were implemented and trained on real guitar recordings. Their accuracy was then evaluated objectively and with listening tests. It was shown that the presented neural networks can create accurate emulations of the overdrive effects with only small imperfections. This work did not aim to create a real-time application, but it could be useful for post-processing.
 
URI
http://hdl.handle.net/10467/96736
Zobrazit/otevřít
PLNY_TEXT (794.6Kb)
PRILOHA (38.26Mb)
POSUDEK (168.0Kb)
POSUDEK (50.96Kb)
Kolekce
  • Bakalářské práce - 13133 [854]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV