Show simple item record

6D Pose Estimation of Textureless Objects from a Single Camera



dc.contributor.advisorMatas Jiří
dc.contributor.authorMichal Lukeš
dc.date.accessioned2021-08-25T22:51:39Z
dc.date.available2021-08-25T22:51:39Z
dc.date.issued2021-08-25
dc.identifierKOS-857605021505
dc.identifier.urihttp://hdl.handle.net/10467/96699
dc.description.abstractV této práci se věnuji vyhledávání objektů v prostoru na základě jediného RGB snímku a to jak pozice na všech třech osách tak i rotace kolem každé z nich za pomocí 3D modelů daných objektů. Uplatnění těchto metod je zejména v robotickém uchopování, autonomním řízení, nebo augmentované realitě. Skvělým zdrojem pro hledání vhodné metody je BOP Challenge, ve kterém jsou porovnávány nejlepší nové algoritmy na množině datasetů. Vybraný algoritmus pak budu přizpůsobovat a naučím jej na svém vlastním datasetu. Současné nejlepší metody pro 6D detekci objektů používají kombinaci klasifikátorů - například Cosypose používá 3 různé neuronové sítě a EPOS používá k predikci 6 kroků včetně vlastní neuronové sítě. Oba algoritmy mají dostupnou implementaci a skvělé výsledky v BOP. Pro ukázku funkčnosti si vyberu 4 objekty a jejich 3d modely a pomocí kamery se pokusím vytvořit základní dataset. Dále ale pokračuji technikou renderování fotorealistických obrázků, která je kvůli automatickému anotování objektů ve všech dimenzích mnohem rychlejší a praktičtější na velká množství dat nutná pro trénování neuronové sítě.cze
dc.description.abstractThis thesis focuses on estimating the pose of objects based on only one RGB image of the scene. This includes the position of the object on the three-axis as well as its rotation using 3D models of the objects. Usage of such methods is mainly in robotic grasping, autonomous driving or augmented reality. A great source for discovering these methods is the BOP Challenge, which is a competition trying to find the best state of the art public method by comparing them on a list of datasets. I will then modify the chosen algorithm and train it on my own dataset. The current state of the art methods use a combination of classifiers. For example, Cosypose uses three neural networks, and EPOS utilizes six steps, including a neural network for the prediction. Both motioned algorithms have publicly available implementation and great results in the BOP Challenge. For my proof of concept, I choose to use 4 objects with their respective 3D models, and I try to create a training dataset using an RGB camera. Then I switch to photorealistic rendering of the training images, which is a lot faster and more practical for the amount of training data a neural network requires, mainly because it allows for automatic annotation of the objects in the 6D space.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subject6Dcze
dc.subjectodhad polohycze
dc.subjectnetexturované a lesklé předmětycze
dc.subject6Deng
dc.subjectPose Estimationeng
dc.subjecttextureless and reflective objectseng
dc.titleOdhadování rotace a translace netexturovaného objektu z jedné kamerycze
dc.title6D Pose Estimation of Textureless Objects from a Single Cameraeng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeHoffmann Matěj
theses.degree.disciplineInformatika a počítačové vědycze
theses.degree.grantorkatedra kybernetikycze
theses.degree.programmeOtevřená informatikacze


Files in this item





This item appears in the following Collection(s)

Show simple item record