ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Departments
  • Department of Applied Mathematics
  • Bachelor Theses - 18105
  • View Item
  • Czech Technical University in Prague
  • Faculty of Information Technology
  • Departments
  • Department of Applied Mathematics
  • Bachelor Theses - 18105
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuronove site na grafech zohlednujici casovy aspekt v kyberneticke bezpecnosti

Temporal Aspect Aware Graph Neural Network in Cybersecurity

Type of document
bakalářská práce
bachelor thesis
Author
Anton Bushuiev
Supervisor
Procházka Pavel
Opponent
Olšák Petr
Field of study
Znalostní inženýrství
Study program
Informatika 2009
Institutions assigning rank
katedra aplikované matematiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Žít v dynamickém světě znamená řešit časově závislé úlohy. Avšak moderní nástroje pro strojové učení na grafech jsou především navržené pro statické sítě. Proto se v této závěrečné práci detailně zabývám problematikou strojového učení respektujícího časový aspekt pro grafové úlohy. Výsledkem tohoto teoretického výzkumu je návrh dynamické grafové neuronové sítě se spojitým časem. Zaměřuji se na problém Cisco Cognitive Intelligence maliciousness classification --- úlohu odhalení internetových domén s bezpečnostním rizikem na základě interakcí mezi uživateli a doménami. Ukazuji, že tento problém lze efektivně vyřešit použitím různých přístupů strojového učení, včetně navrženého. Navíc demonstruji, že obecné zákonitostí bezpečnostního rizika domén nevykazují dynamické vlastnosti v uvažovaných datech z reálného světa.
 
Living in a dynamic world means dealing with time-dependent tasks. However, the modern toolbox for machine learning on graphs is mainly designed for static networks. Therefore, in this thesis, I deepen into the problematics of temporal-aware machine learning approaches for graph problems. The outcome of this study is a proposal for the new continuous-time dynamic graph neural network. I focus on the Cisco Cognitive Intelligence maliciousness classification problem --- the task of malicious Internet domain exposure based on user-domain interactions. I demonstrate that this problem can be efficiently solved employing different approaches, including the proposed one. Moreover, I show that general maliciousness patterns do not exhibit dynamic properties in the considered real-world data.
 
URI
http://hdl.handle.net/10467/95116
View/Open
PLNY_TEXT (2.446Mb)
PRILOHA (5.989Mb)
POSUDEK (53.83Kb)
POSUDEK (45.30Kb)
Collections
  • Bakalářské práce - 18105 [182]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV