ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neuronove site na grafech zohlednujici casovy aspekt v kyberneticke bezpecnosti

Temporal Aspect Aware Graph Neural Network in Cybersecurity

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Anton Bushuiev
Vedoucí práce
Procházka Pavel
Oponent práce
Olšák Petr
Studijní obor
Znalostní inženýrství
Studijní program
Informatika 2009
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Žít v dynamickém světě znamená řešit časově závislé úlohy. Avšak moderní nástroje pro strojové učení na grafech jsou především navržené pro statické sítě. Proto se v této závěrečné práci detailně zabývám problematikou strojového učení respektujícího časový aspekt pro grafové úlohy. Výsledkem tohoto teoretického výzkumu je návrh dynamické grafové neuronové sítě se spojitým časem. Zaměřuji se na problém Cisco Cognitive Intelligence maliciousness classification --- úlohu odhalení internetových domén s bezpečnostním rizikem na základě interakcí mezi uživateli a doménami. Ukazuji, že tento problém lze efektivně vyřešit použitím různých přístupů strojového učení, včetně navrženého. Navíc demonstruji, že obecné zákonitostí bezpečnostního rizika domén nevykazují dynamické vlastnosti v uvažovaných datech z reálného světa.
 
Living in a dynamic world means dealing with time-dependent tasks. However, the modern toolbox for machine learning on graphs is mainly designed for static networks. Therefore, in this thesis, I deepen into the problematics of temporal-aware machine learning approaches for graph problems. The outcome of this study is a proposal for the new continuous-time dynamic graph neural network. I focus on the Cisco Cognitive Intelligence maliciousness classification problem --- the task of malicious Internet domain exposure based on user-domain interactions. I demonstrate that this problem can be efficiently solved employing different approaches, including the proposed one. Moreover, I show that general maliciousness patterns do not exhibit dynamic properties in the considered real-world data.
 
URI
http://hdl.handle.net/10467/95116
Zobrazit/otevřít
PLNY_TEXT (2.446Mb)
PRILOHA (5.989Mb)
POSUDEK (53.83Kb)
POSUDEK (45.30Kb)
Kolekce
  • Bakalářské práce - 18105 [369]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV