ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta informačních technologií
  • katedry
  • katedra aplikované matematiky
  • Bakalářské práce - 18105
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Srovnání Generatívních adversariálních sítí a využití na medicínských datech

Comparison of Generative Adversarial Networks on medical imaging data

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
Mark Sobolev
Vedoucí práce
Žitný Jakub
Oponent práce
Friedjungová Magda
Studijní obor
Znalostní inženýrství
Studijní program
Informatika 2009
Instituce přidělující hodnost
katedra aplikované matematiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Cílem této práce je pokusit se použít nedávno navržený model generativní adversarialní sítě pro klasifikaci a segmentaci lékařských obrazů a porovnat výsledky s moderními modely GAN, které se v současné době používají pro rozšiřování lékařských dat.
 
The aim of this work is to try to apply the recently proposed generative adversarial network model for the classification and segmentation of medical images and to compare the results with modern GAN models currently used for medical data augmentation.
 
URI
http://hdl.handle.net/10467/95034
Zobrazit/otevřít
PLNY_TEXT (3.162Mb)
PRILOHA (3.689Kb)
PRILOHA (1.092Kb)
PRILOHA (2.401Kb)
POSUDEK (48.52Kb)
POSUDEK (57.61Kb)
Kolekce
  • Bakalářské práce - 18105 [369]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV