ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Computer Science and Engineering
  • Master Theses - 13136
  • View Item
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Computer Science and Engineering
  • Master Theses - 13136
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predikce sportovních zápasů s neurálními modely

Predicting sports matches with neural models

Type of document
diplomová práce
master thesis
Author
Aleksandra Pereverzeva
Supervisor
Šír Gustav
Opponent
Drchal Jan
Field of study
Datové vědy
Study program
Otevřená informatika
Institutions assigning rank
katedra počítačů



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Tato práce prozkoumává problém predikce sportovních výsledků a nabízí dva přístupy řešení pomocí neuronových sítí. První přístup je tradiční umělá neuronová síť s embeddingem jednotlivých týmu. Druhé řešení je relativně nový přístup používající Konvoluční Grafové Neuronové Sítě pro reprezentaci týmů. Práce je inovativní tím, že modely nepoužívají vlastnosti specifické pro jednotlivé sporty. Modely se učí na základě výsledků minulých zápasů a jsou vytvořeny, natrénovány a otestovány na dvou doménách: fotbalu a hokeji. Výsledky modelů jsou uspokojivé, pokud se bere v potaz jejich obecnost. Nicméně, výsledné modely ještě nemůžou soupeřit s nejmodernějšími modely a systémy existujícími na trhu.
 
This thesis explores the problem of predicting sports results and offers two approaches that utilize neural networks. The first approach is a traditional artificial neural network with the embedding of the individual teams. The second one is a relatively new approach that employs Convolutional Graph Neural Networks for team representation. The innovation of this work is that the models do not utilize any sport-specific features. Instead, the models are supposed to learn using merely the results of the past matches. The models are created, trained, and tested on two sports domains: soccer and ice hockey. The results turned out to be satisfactory, taking into consideration the generality of the models. However, the resulting models cannot yet compete with state-of-the-art models and market systems.
 
URI
http://hdl.handle.net/10467/92732
View/Open
PLNY_TEXT (1.432Mb)
PRILOHA (1.923Mb)
POSUDEK (206.9Kb)
POSUDEK (726.4Kb)
Collections
  • Diplomové práce - 13136 [966]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV