ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra počítačů
  • Bakalářské práce - 13136
  • View Item
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra počítačů
  • Bakalářské práce - 13136
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metody redukce dimenze pro dataset funkční mapy světa

Dimensionality Reduction Methods for the Functional Map of the World Dataset

Type of document
bakalářská práce
bachelor thesis
Author
Jan Macek
Supervisor
Reinštein Michal
Opponent
Faigl Jan
Study program
Softwarové inženýrství a technologie
Institutions assigning rank
katedra počítačů



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
Algoritmy redukce dimenze jsou skvělé pro hlubší pochopení datového souboru. V posledních letech jsme viděli růst algoritmů pro výběr prvků, konkrétně podtřídy sousedních grafů. V této práci jsme se zaměřili na nejmodernější algoritmus UMAP a aplikovali jsme na nejmodernější datový soubor fMoW. Poté porovnáme výsledky UMAP se starší konkurenční metodou t-SNE. Podíváme se na silné a slabé stránky obou metod a možné obtíže při aplikaci na komplexní datový soubor fMoW. Na základě těchto výsledků implementujeme a školíme neuronovou síť EfficientNet na datovém souboru fMoW.
 
Dimensionality reduction algorithms are great for a deeper understanding of the dataset. In recent years we saw grow of feature selection algorithms more specifically subclass of neighbor graphs. In this work, we focused on the state of the art algorithm UMAP and applicated for the state of the art fMoW dataset. We then compare UMAP results, with older competing method t-SNE. We look at there strengths and weaknesses of both methods and possible difficulties in the application on the complex fMoW dataset. Based on these results, we implement and trained EfficientNet neural network on the fMoW dataset.
 
URI
http://hdl.handle.net/10467/89835
View/Open
PRILOHA (10.47Mb)
PRILOHA (8.111Kb)
PRILOHA (24.15Mb)
PRILOHA (29.24Mb)
PRILOHA (8.985Mb)
PRILOHA (19.89Mb)
POSUDEK (64.17Kb)
PLNY_TEXT (28.45Mb)
POSUDEK (236.5Kb)
PRILOHA (42.97Mb)
Collections
  • Bakalářské práce - 13136 [796]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV