ČVUT DSpace
  • Search DSpace
  • Čeština
  • Login
  • Čeština
  • Čeština
View Item 
  •   ČVUT DSpace
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Master Theses - 13133
  • View Item
  • Czech Technical University in Prague
  • Faculty of Electrical Engineering
  • Department of Cybernetics
  • Master Theses - 13133
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hierarchické prediktivní řízení pro dynamické rozdělení výkonu hybridních vozidel s palivovými články

Hierarchical Model Predictive Control for the Dynamical Power Split of a Fuel Cell Hybrid Vehicle

Type of document
diplomová práce
master thesis
Author
Daniel Klöser
Supervisor
von Platen Philip
Opponent
Hušek Petr
Field of study
Robotika
Study program
Kybernetika a robotika
Institutions assigning rank
katedra kybernetiky



Rights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item record
Abstract
In order to reduce emissions of the transport sector, fuel cell hybrid vehicles (FCHVs) constitute a promising alternative as they have zero local emissions and overcome the limited range of electric vehicles. The power management of the propulsion system poses many challenges since it is a highly nonlinear, constrained, strongly coupled, multiple-input multiple-output (MIMO) system. The control objectives aim at dynamic power delivery, minimization of hydrogen consumption and charge sustainability of the battery. This thesis presents a hierarchical model predictive control (MPC) with three levels approaching the control problem on different time scales. The high-level control (HLC) implemented as a nonlinear MPC optimizes the static power split between battery and fuel cell system. The intermediate-level control (ILC) uses static optimization to determine the optimal operating point of the air supply. The lowlevel control (LLC) is a nonlinear MPC and tracks the reference trajectories received from the higher levels. The hierarchical MPC is evaluated on a detailed model of an FCHV using the worldwide harmonized light vehicles test cycle. Utilizing predictive information about the power demand, the HLC provides a power split that assures charge sustainability of the battery and only deviates by 0.2% from the optimal solution in terms of hydrogen consumption. Due to the predictive behavior and inherent decoupling capability of an MPC, the LLC achieves dynamic power delivery while explicitly considering the system constraints caused by prevention of oxygen starvation and limited operating range of the compressor. Moreover, the actual hydrogen consumption deviates only by 1% from the hydrogen consumption that is predicted by the HLC. Even for uncertain power demand prediction, the LLC attains dynamic power delivery by deviating from the reference trajectories to relieve the fuel cell system when operating under system constraints.
 
In order to reduce emissions of the transport sector, fuel cell hybrid vehicles (FCHVs) constitute a promising alternative as they have zero local emissions and overcome the limited range of electric vehicles. The power management of the propulsion system poses many challenges since it is a highly nonlinear, constrained, strongly coupled, multiple-input multiple-output (MIMO) system. The control objectives aim at dynamic power delivery, minimization of hydrogen consumption and charge sustainability of the battery. This thesis presents a hierarchical model predictive control (MPC) with three levels approaching the control problem on different time scales. The high-level control (HLC) implemented as a nonlinear MPC optimizes the static power split between battery and fuel cell system. The intermediate-level control (ILC) uses static optimization to determine the optimal operating point of the air supply. The lowlevel control (LLC) is a nonlinear MPC and tracks the reference trajectories received from the higher levels. The hierarchical MPC is evaluated on a detailed model of an FCHV using the worldwide harmonized light vehicles test cycle. Utilizing predictive information about the power demand, the HLC provides a power split that assures charge sustainability of the battery and only deviates by 0.2% from the optimal solution in terms of hydrogen consumption. Due to the predictive behavior and inherent decoupling capability of an MPC, the LLC achieves dynamic power delivery while explicitly considering the system constraints caused by prevention of oxygen starvation and limited operating range of the compressor. Moreover, the actual hydrogen consumption deviates only by 1% from the hydrogen consumption that is predicted by the HLC. Even for uncertain power demand prediction, the LLC attains dynamic power delivery by deviating from the reference trajectories to relieve the fuel cell system when operating under system constraints.
 
URI
http://hdl.handle.net/10467/82827
View/Open
PLNY_TEXT (3.521Mb)
POSUDEK (147.8Kb)
POSUDEK (12.77Kb)
POSUDEK (288.5Kb)
Collections
  • Diplomové práce - 13133 [519]

Related items

Showing items related by title, author, creator and subject.

  • Vizualizace a řízení programovatelnými automaty ControlLogix 

    Author: Šimek Pavel; Supervisor: Fuka Jindřich; Opponent: Nekvinda Josef
    (České vysoké učení technické v Praze. Vypočetní a informační centrum., 2012-07-24)
  • H2 optimal control algorithms for vehicle control 

    Author: David Vošahlík; Supervisor: Haniš Tomáš; Opponent: Bušek Jaroslav
    (České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2020-01-28)
    Vzestup autonomních vozidel a e-mobility umožňuje nasazení pokročilých řídicích systémů. Řízení na úrovni dynamiky vozidla poskytuje vyšší bezpečnost a lepší odezvu speciálně při velmi rychlých manévrech. Tato práce bere ...
  • Možnosti vzdálené správy zařízení I4Control® 

    Author: Kercl Jiří; Supervisor: Dobiáš Martin; Opponent: Fejtová Marcela
    (České vysoké učení technické v Praze. Vypočetní a informační centrum., 2011-10-14)

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Useful links

CTU in PragueCentral library of CTUAbout CTU Digital LibraryResourcesStudy and library skillsResearch support

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Contact Us | Send Feedback
Theme by 
@mire NV