ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta jaderná a fyzikálně inženýrská
  • katedra fyziky
  • Diplomové práce - 14102
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta jaderná a fyzikálně inženýrská
  • katedra fyziky
  • Diplomové práce - 14102
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Delonovské množiny uzavřené vůči afinním zobrazením

Delone sets closed under afine mappings

Typ dokumentu
diplomová práce
master thesis
Autor
Jan Mazáč
Vedoucí práce
Masáková Zuzana
Oponent práce
Hejda Tomáš
Studijní obor
Matematická fyzika
Studijní program
Aplikace přírodních věd
Instituce přidělující hodnost
katedra fyziky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Vhodným modelem pro kvazikrystaly -- nekrystalografické materiály s uspořádáním na dlouhou vzdálenost -- je diskrétní množina vzniklá pomocí tzv. cut and project metody.Tato metoda využívá projekce vícedimenzionálních mříží na vhodně zvolené podprostory. Umožňuje tak vytvořit diskrétní množiny se symetriemi, jež nemohou mít mřížky v nízkých dimenzích. V práci se zaměřujeme na následující otázku, totiž zda k zadanému lineárnímu zobrazení A existuje cut and project schéma takové, že jeho první projekce mříže je invariantní vůči tomuto zobrazení. V práci je dána odpověď pro libovolné zobrazení společně s popisem konstrukce příslušného schématu. Pro diagonalizovatelná zobrazení navíc určujeme minimální potřebnou dimenzi mříže. Celá práce využívá maticový formalismus založený na Jordanových formách matic. Pro kvazikrystaly s pětičetnou symetrií s kruhovým oknem dále popíšeme všechny jejich možné lineární soběpodobnosti.
 
A suitable model for quasicrystals -- non-crystallographic materials with long range order -- is provided by discrete sets constructed using the so-called cut and project method. The method uses projections of a higher-dimensional lattice to suitable subspaces, thus allowing to create discrete sets having symmetries forbidden in lattices of lower dimension. In this work we answer the following question: For a given linear mapping A, does there exist a cut and project scheme such that the first projection of a lattice is invariant under this mapping? We give the answer for all possible linear mappings and we give a construction of such a scheme. In the case of diagonalizable mappings we determine the minimal dimension of the scheme. For our study we use a matrix formalism based on Jordan forms of matrices. We then focus on pentagonal cut and project sets with circular window and provide a description of all their self-similarities.
 
URI
http://hdl.handle.net/10467/82624
Kolekce
  • Diplomové práce - 14102 [240]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV