Zlepšování algoritmů pro učení se řadit
Improving Learning to Rank Algorithms
Type of document
bakalářská prácebachelor thesis
Author
Vu Huy Hoang
Supervisor
Kordík Pavel
Opponent
Maldonado Lopez Juan Pablo
Field of study
Teoretická informatikaStudy program
InformatikaInstitutions assigning rank
katedra teoretické informatikyRights
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Show full item recordAbstract
V této práci se zabývám existujícími algoritmy pro úlohu přeřazení URL podle relevance na základě uživatelského dotazu do vyhledávače a metodami kolaborativního filtrování, které uvádím v rešerši. Vybrané algoritmy, což jsou ES-Rank a maticová faktorizace, pak implementuji a použiji na dataset poskytnutý společností Yandex v rámci soutěže Personalized Web Search Challenge na Kaggle.com. Poté porovnávám přesnost řazení s ostatními řešeními na Kaggle.com. Následně testuji, jestli kolaborativní filtrování metodou maticové faktorizace významně zvyšuje přesnost řazení. Nakonec analyzuji časovou složitost svého řešení. In this thesis I explore existing approaches to the learning to rank problem and collaborative filtering methods, and apply them to Yandex's dataset provided in the Personalized Web Search Challenge competition on Kaggle.com. I build on the existing submissions by replicating the top competitor's feature extraction from the dataset. Then I implement and apply ES-Rank and matrix factorization on these features and test if matrix factorization based collaborative filtering significantly increases the overall performance of the algorithm. Then I compare the performance of the implemented algorithms to other submissions on Kaggle. Lastly I analyze the time complexity of my solution.
Collections
- Bakalářské práce - 18101 [349]