Vyhodnocení kombinace učení imitací a posilovaného učení pro různé úlohy řízení
Evaluation of Imitation Learning with Reinforcement Learning-Based Fine-Tuning for Different Control Tasks
Typ dokumentu
diplomová prácemaster thesis
Autor
Rawan Abusadeh
Vedoucí práce
Pěnička Robert
Oponent práce
Kulich Miroslav
Studijní program
Cybernetics and RoboticsInstituce přidělující hodnost
katedra kybernetikyPráva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznamAbstrakt
This thesis evaluates the performance of different learning-based control methods for various control tasks. Focusing on comparing techniques from Imitation Learning (IL) and Reinforcement Learning (RL) to understand their strengths and limitations. Based on these insights, a novel hybrid approach is proposed, which combines the rapid learning capabilities of IL with the adaptability and robustness of RL. IL is beneficial because it enables an agent to learn quickly from expert demonstrations. However, it can struggle in situations that differ from the training data. In contrast, RL allows an agent to learn through trial and error, often resulting in better long-term outcomes, but it tends to be slower and less efficient, especially with complex tasks. The proposed hybrid approach seeks to leverage the advantages of both methods, addressing these challenges effectively. A comprehensive evaluation of IL and RL algorithms is conducted to analyze their learning efficiency, task performance, and practical applicability to handle high-dimensional, continuous control tasks. Results demonstrate that the hybrid approach consistently outperforms standalone IL and RL, achieving an optimal balance between learning speed and task accuracy. This work underscores the potential of hybrid learning methods to tackle challenging control problems more efficiently and effectively. This thesis evaluates the performance of different learning-based control methods for various control tasks. Focusing on comparing techniques from Imitation Learning (IL) and Reinforcement Learning (RL) to understand their strengths and limitations. Based on these insights, a novel hybrid approach is proposed, which combines the rapid learning capabilities of IL with the adaptability and robustness of RL. IL is beneficial because it enables an agent to learn quickly from expert demonstrations. However, it can struggle in situations that differ from the training data. In contrast, RL allows an agent to learn through trial and error, often resulting in better long-term outcomes, but it tends to be slower and less efficient, especially with complex tasks. The proposed hybrid approach seeks to leverage the advantages of both methods, addressing these challenges effectively. A comprehensive evaluation of IL and RL algorithms is conducted to analyze their learning efficiency, task performance, and practical applicability to handle high-dimensional, continuous control tasks. Results demonstrate that the hybrid approach consistently outperforms standalone IL and RL, achieving an optimal balance between learning speed and task accuracy. This work underscores the potential of hybrid learning methods to tackle challenging control problems more efficiently and effectively.
Kolekce
- Diplomové práce - 13133 [519]
Související záznamy
Zobrazují se záznamy příbuzné na základě názvu, autora a předmětu.
-
Umělá inteligence ve zdravotnictví
Autor: Dalibor Čápek; Vedoucí práce: Štědroň Bohumír; Oponent práce: Zdvořák Pavel
(České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2022-06-02)Diplomová práce se věnuje využití umělé inteligence ve zdravotnictví. Pojem umělá inteligence se objevuje stále více v souvislosti s dopady na různá odvětví. Cílem práce je zaměřit se na vývoj umělé inteligence ve zdravotnictví ... -
Hluboké učení pro autonomní off-road řízení v simulaci
Autor: Valentin Jacques; Vedoucí práce: Zimmermann Karel; Oponent práce: Ecorchard Gaël Pierre Marie
(České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2018-06-18)This thesis presents different ways to make a car autonomous. We will use the power of machine learning and neural network to ?teach? a car how to drive autonomously in an off-road environment by using only a minimum set ... -
Hledání leptoquarků pomocí strojového učení v datech z CERN ATLAS experiment
Autor: Lukáš Viceník; Vedoucí práce: Sopczak André; Oponent práce: Petousis Vlasios
(České vysoké učení technické v Praze. Vypočetní a informační centrum.Czech Technical University in Prague. Computing and Information Centre., 2022-06-07)V této práci vylepšíme hodnotu cross-section limitu pro párovou produkci ska-lárních Leptokvarků třetí generace při roz-padu na top quark a τ -lepton. Událost je vybrána pokud obsahuje dva lehké leptony (elektron nebo muon) ...