Zobrazit minimální záznam

Training of Binary-Ternary Neural Networks



dc.contributor.advisorPevný Tomáš
dc.contributor.authorViktor Nezveda
dc.date.accessioned2024-06-18T14:13:53Z
dc.date.available2024-06-18T14:13:53Z
dc.date.issued2024-06-05
dc.identifierKOS-1240737318505
dc.identifier.urihttp://hdl.handle.net/10467/114920
dc.description.abstractNeuronové sítě jsou užitečné nástroje pro efektivní řešení rozličných problémů. Jednou z jejich hlavních nevýhod je však to, že jsou pro člověka často nepřehledné a jejich závěry neodůvodněné. V této práci formulujeme specifický tip neuronových sítí, tzv. binární-ternární sítě, které se vyznačují ternárními vahami a binárními aktivačními funkcemi. Tento model nabízí několik výhod oproti tradičním neuronovým sítím, například schopnost být plně reprezentován jako soubor logických pravidel, což zpřehledňuje jeho výstupy a umožňuje tak lidem hlubší pochopení. Proces trénování binárních-ternárních sítí však přináší problémy netipické pro tradiční hluboké sítě, jako neinformativnost gradientů a diskrétní váhový prostor. V této práci popisujeme a porovnáváme tři rozdílné metody, které se snaží těmto problémům předcházet a umožňují tak efektivní trénování binárních-ternárních sítí.cze
dc.description.abstractNeural networks are powerful tools for solving complex problems, but their inner workings often remain incomprehensible to humans. In this thesis, we formulate a novel type of neural network called "binary-ternary" neural network, characterized by ternary weights and binary activation function. This model offers distinct advantages over traditional neural networks, such as the ability to be fully represented as a series of logical rules, which ultimately makes the output of the network more understandable. However, the process of training binary-ternary networks brings forth a new set of challenges such as non-informativeness of gradients and discrete weight space, uncommon for conventional deep nets. In this thesis, we describe and compare the results of three distinct methods that try to circumvent these problems, thereby enabling an effective training.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectstrojové učenícze
dc.subjectneuronové sítěcze
dc.subjectoptimalizacecze
dc.subjectternární váhycze
dc.subjectbinární aktivační funkcecze
dc.subjectmachine learningeng
dc.subjectneural networkseng
dc.subjectoptimizationeng
dc.subjectternary weightseng
dc.subjectbinary activation functioneng
dc.titleUčení binárních-ternárních neuronových sítícze
dc.titleTraining of Binary-Ternary Neural Networkseng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeShekhovtsov Oleksandr
theses.degree.disciplineZáklady umělé inteligence a počítačových vědcze
theses.degree.grantorkatedra kybernetikycze
theses.degree.programmeOtevřená informatikacze


Soubory tohoto záznamu





Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam