ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Diplomové práce - 13133
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Diplomové práce - 13133
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatické určení Knosp skóre na základě segmentace anatomických struktur

Automatic Determination of Knosp Score Based on Segmentation of Anatomical Structures

Typ dokumentu
diplomová práce
master thesis
Autor
Filip Oplt
Vedoucí práce
Černý Martin
Oponent práce
Bakštein Eduard
Studijní obor
Zpracování obrazu
Studijní program
Lékařská elektronika a bioinformatika
Instituce přidělující hodnost
katedra kybernetiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Tato práce se zabývá automatickým určováním Knosp skóre ze snímků magnetické rezonance mozku a jejich segmentačních masek. Knosp skóre je stupeň na škále rozšířeného klasifikačního systému pro hodnocení závažnosti adenomu hypofýzy. Určení tohoto skóre může pomoci stratifikovat rizika při neurochirurgické léčbě. Prezentované řešení zahrnuje geometrický model založený na pravidlech a modely využívající metod hlubokého učení. Poskytnutá vstupní data obsahují 394 trénovacích subjektů a 99 testovacích subjektů. Na testovacím souboru geometrický model správně klasifikuje 79,80 % případů problému a nejlepší model hlubokého učení vykazuje přesnost 73,74 %. Spearmanův korelační koeficient 0,86, respektive 0,84 ukazuje u obou modelů ve vzathu k expertní anotaci lepší shodu, než byla u této klasifikační stupnice dříve zjištěna mezi odbornými hodnotiteli.
 
This thesis deals with the automatic determination of Knosp scores in magnetic resonance imaging brain scans and their segmentation masks. Knosp score is a grade in a widely used classification system for pituitary adenoma severity assessment. Its correct determination can help to stratify the risks in neurosurgical treatment. A geometric rule-based model and deep learning models are presented as a solution to this task. The available data comprise 394 training subjects and 99 test subjects. On the test dataset, the geometric model correctly classifies 79.80% of the problem's instances, and the best deep learning model exhibits an accuracy of 73.74%. Both models show a good agreement with the expert annotation with a Spearman correlation coefficient of 0.86, respectively 0.84, which is better than a previously reported inter-rater reliability of the Knosp classification system.
 
URI
http://hdl.handle.net/10467/113307
Zobrazit/otevřít
PRILOHA (10.05Mb)
POSUDEK (264.5Kb)
POSUDEK (207.0Kb)
POSUDEK (96.62Kb)
PLNY_TEXT (6.783Mb)
Kolekce
  • Diplomové práce - 13133 [519]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV