ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra kybernetiky
  • Bakalářské práce - 13133
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Klasifikace zemědělských plodin z multi-spektrálních satelitních dat

Agricultural Crop Classification from Multi-Spectral Satellite Data

Typ dokumentu
bakalářská práce
bachelor thesis
Autor
David Bradshaw
Vedoucí práce
Čech Jan
Oponent práce
Franc Vojtěch
Studijní program
Kybernetika a robotika
Instituce přidělující hodnost
katedra kybernetiky



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
Práce prezentuje výsledky našeho modelu konvoluční neuronové sítě pro klasifikaci multispektrálních družicových dat. Navrhli a vycvičili jsme binární klasifikátor pro rozpoznání kukuřice od jiných plodin. Model byl trénován na datovém souboru multispektrálních odezev v daném místě po dobu jednoho roku. Model byl navržen tak, aby akceptoval neúplnou časovou řadu (ne nutně rok dlouhou) jako vstup a kromě výstupu klasifikace poskytuje skóre spolehlivosti. Skóre spolehlivosti se používá pro možnost zdržet se rozhodnutí v nejednoznačných případech. Všechny naše experimenty jsou prováděny na veřejně dostupném datovém souboru TimeSen2Crop prezentovaném Weikmann et al., 2021. Přesnost našeho nejlepšího modelu pro kompletní vstup (celý rok) na nezávislé testovací sadě je 96% a zůstává kolem 95% až po vstup dlouhý půl roku. Přesnost lze dále zlepšit, když klasifikátor rozhoduje pouze v jistých případech. Například roční přesnost lze zvýšit až na 99,3% tím, že se zdržíte rozhodnutí u 20% vzorků.
 
The thesis presents results of our convolutional neural network model for classifying multispectral satellite data. We designed and trained a binary classifier for recognizing corn (maize) from other crops. The model was trained on a dataset of multispectral responses at a given location over the duration of a year. The model was designed to accept an incomplete time series (not necessarily year-long) as an input, and provides a confidence score besides the classification output. The confidence score is used for the option of abstaining from a decision in ambiguous cases. All of our experiments are carried out on publicly available TimeSen2Crop dataset presented by Weikmann et al., 2021. The accuracy, on an independent test set, of our best model for the complete input (year-long) is 96% and stays around 95% up to an input of half a year long. The accuracy can be further improved when the classifier decides only in confident cases. For example the year-long accuracy can be increased up to 99.3% by abstaining from decision in 20% of samples.
 
URI
http://hdl.handle.net/10467/109022
Zobrazit/otevřít
PLNY_TEXT (514.9Kb)
POSUDEK (101.8Kb)
POSUDEK (208.9Kb)
POSUDEK (101.7Kb)
Kolekce
  • Bakalářské práce - 13133 [854]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV