Show simple item record

Analyzing Impact of Interaction Context in Collaborative Filtering



dc.contributor.advisorŘehořek Tomáš
dc.contributor.authorMartin Scheubrein
dc.date.accessioned2019-06-14T22:51:56Z
dc.date.available2019-06-14T22:51:56Z
dc.date.issued2019-06-14
dc.identifierKOS-762877376305
dc.identifier.urihttp://hdl.handle.net/10467/83135
dc.description.abstractKolaborativní filtrování je jednou z nejúspěšnějších technik používaných v doporučovacích systémech. Základní algoritmy využívají historické interakce mezi uživateli a předměty, nicméně doporučovací systémy nasazené v produkčním prostředí mají často k dispozici minimálně jednu další dimenzi dat - časová razítka těchto interakcí. Tyto okolnosti interakcí nazýváme kontextem. Tato práce využívá dosud často opomíjené informace v datech ke zlepšení přesnosti doporučování. Je navrženo několik nových přístupů k začlenění kontextu do tradičních metod kolaborativního filtrování. K evaluaci těchto vylepšení je navržen a implementován testovací framework. Navržené metody jsou rozsáhle testovány na několika datasetech, s různými parametry a kontexty. Výsledky ukazují, že metody beroucí v úvahu kontext vykazují i na převážně statických datasetech zlepšení metriky recall o 5-25 % oproti tradidičním algoritmům kolaborativního filtrování.cze
dc.description.abstractCollaborative filtering is one of the most successful techniques used in recommender systems. The basic algorithms utilize history of interactions between users and items. However, recommenders deployed in production often have at least one more dimension of data available--timestamp of the interaction. These interaction circumstances are collectively referred to as the context. This thesis exploits the additional information in order to improve overall recommender accuracy. Several novel approaches to incorporating context into traditional collaborative filtering are proposed. An evaluation framework is designed and proposed algorithms are extensively evaluated with different parameters and contexts on multiple datasets. Results show that even mostly static datasets benefit from the proposed context-aware approach. About 5-35 % recall increase was observed in comparison with traditional collaborative filtering algorithms.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectdoporučovací systémycze
dc.subjectkolaborativní filtrovánícze
dc.subjectkontextcze
dc.subjectčasová dynamikacze
dc.subjectrecommender systemseng
dc.subjectcollaborative filteringeng
dc.subjectinteraction contexteng
dc.subjecttemporal dynamicseng
dc.titleAnalýza vlivu kontextu interakcí při doporučování kolaborativním filtrovánímcze
dc.titleAnalyzing Impact of Interaction Context in Collaborative Filteringeng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.contributor.refereeDedecius Kamil
theses.degree.disciplineZnalostní inženýrstvícze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatikacze


Files in this item




This item appears in the following Collection(s)

Show simple item record