Incorporating Language Models into Non-autoregressive Neural Machine Translation
Použití jazykových modelů v neautoregresivním neuronovém strojovém překladu
Authors
Supervisors
Reviewers
Editors
Other contributors
Journal Title
Journal ISSN
Volume Title
Publisher
České vysoké učení technické v Praze
Czech Technical University in Prague
Czech Technical University in Prague
Date
Abstract
V této práci navrhujeme způsob pro zlepšení plynulosti výstupu neautoregresivního modelu pro neuronový strojový překlad. Využíváme k tomu rozšířený model pro počítání skóre během paprskového prohledávání. Skóre vypočítáváme jako lineární kombinaci dílčích skóre pocházejících z n-gramového jazykového modelu a dalších pomocných příznaků. Váhy pro lineární kombinaci určujeme pomocí strukturovaného perceptronu. Pro vyhodnocení rychlosti a kvality překladu trénujeme modely pro tři dvojice jazyků. Výsledky ukazují, že modely s navrženým vylepšením jsou stále dostatečně efektivní z hlediska rychlosti a zároveň dosahují výsledků srovnatelných s autoregresivními modely.
In order to improve the fluency of a non-autoregressive model for neural machine translation, we propose an extension for the scoring model used during the beam search decoding. We compute the score as a linear combination of feature values, including the score from an n-gram language model and other auxiliary features. We determine the weights of the features using the structured perceptron algorithm. We train the models for three language pairs and evaluate their decoding speed and translation quality. The results show that our proposed models are still efficient in terms of decoding speed while achieving a competitive score relative to autoregressive models.
In order to improve the fluency of a non-autoregressive model for neural machine translation, we propose an extension for the scoring model used during the beam search decoding. We compute the score as a linear combination of feature values, including the score from an n-gram language model and other auxiliary features. We determine the weights of the features using the structured perceptron algorithm. We train the models for three language pairs and evaluate their decoding speed and translation quality. The results show that our proposed models are still efficient in terms of decoding speed while achieving a competitive score relative to autoregressive models.