Zobrazit minimální záznam

Manipulating the Capacity of Recommendation Models in Recall-Coverage Optimization



dc.contributor.advisorKordík Pavel
dc.contributor.authorTomáš Řehořek
dc.date.accessioned2019-04-05T11:19:10Z
dc.date.available2019-04-05T11:19:10Z
dc.date.issued2019-04-04
dc.identifierKOS-325154452805
dc.identifier.urihttp://hdl.handle.net/10467/81823
dc.description.abstractTraditional approaches in Recommender Systems ignore the problem of long-tail recommendations. There is no systematic approach to control the magnitude of long-tail recommendations generated by the models, and there is not even proper methodology to evaluate the quality of long-tail recommendations. This thesis addresses the long-tail recommendation problem from both the algorithmic and evaluation perspective. We proposed controlling the magnitude of long-tail recommendations generated by models through the manipulation with capacity hyperparameters of learning algorithms, and we dene such hyperparameters for multiple state-of-the-art algorithms. We also summarize multiple such algorithms under the common framework of the score function, which allows us to apply popularity-based regularization to all of them. We propose searching for Pareto-optimal states in the Recall-Coverage plane as the right way to search for long-tail, high-accuracy models. On the set of exhaustive experiments, we empirically demonstrate the corectness of our theory on a mixture of public and industrial datasets for 5 dierent algorithms and their dierent versions.cze
dc.description.abstractTraditional approaches in Recommender Systems ignore the problem of long-tail recommendations. There is no systematic approach to control the magnitude of long-tail recommendations generated by the models, and there is not even proper methodology to evaluate the quality of long-tail recommendations. This thesis addresses the long-tail recommendation problem from both the algorithmic and evaluation perspective. We proposed controlling the magnitude of long-tail recommendations generated by models through the manipulation with capacity hyperparameters of learning algorithms, and we dene such hyperparameters for multiple state-of-the-art algorithms. We also summarize multiple such algorithms under the common framework of the score function, which allows us to apply popularity-based regularization to all of them. We propose searching for Pareto-optimal states in the Recall-Coverage plane as the right way to search for long-tail, high-accuracy models. On the set of exhaustive experiments, we empirically demonstrate the corectness of our theory on a mixture of public and industrial datasets for 5 dierent algorithms and their dierent versions.eng
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectRecommender Systemscze
dc.subjectLong Tailcze
dc.subjectHyperparameterizationcze
dc.subjectModel Capacitycze
dc.subjectRegularizationcze
dc.subjectPopularitycze
dc.subjectCollaborative Filteringcze
dc.subjectRecallcze
dc.subjectCatalog Coveragecze
dc.subjectMulti-Objective Optimizationcze
dc.subjectRecommender Systemseng
dc.subjectLong Taileng
dc.subjectHyperparameterizationeng
dc.subjectModel Capacityeng
dc.subjectRegularizationeng
dc.subjectPopularityeng
dc.subjectCollaborative Filteringeng
dc.subjectRecalleng
dc.subjectCatalog Coverageeng
dc.subjectMulti-Objective Optimizationeng
dc.titleManipulace kapacitou doporučovacích modelů pro optimalizaci v Recall-Coverage roviněcze
dc.titleManipulating the Capacity of Recommendation Models in Recall-Coverage Optimizationeng
dc.typedisertační prácecze
dc.typedoctoral thesiseng
dc.contributor.refereeVojtáš Peter
theses.degree.disciplineInformatikacze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatikacze


Soubory tohoto záznamu


Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam