Show simple item record

Mathematical Models of Flow of Incompressible Fluid with Various Types of Bundary Conditions

dc.contributor.advisorKučera Petr
dc.contributor.authorPíšová Jitka
dc.date.accessioned2019-01-16T09:40:45Z
dc.date.available2019-01-16T09:40:45Z
dc.date.issued2018-11-30
dc.identifierKOS-322726834505
dc.identifier.urihttp://hdl.handle.net/10467/79207
dc.description.abstractPředložená disertační práce se zabývá nejznámějšími matematickými modely proudění vazké nestačitelné tekutiny s různými typy okrajových podmínek. Úvodní část popisuje vývoj studované problematiky a shrnuje její současný stav. Práce se dále zabývá systémem stacionárních Boussinesqových rovnic se smíšenými okrajovými podmínkami. Definuje Banachův prostor X možných řešení úlohy a Banachův prostor Y možných dat úlohy. Dále zavádí operátor N:X →Y a pomocí operátorové rovnice formuluje problém. Jedním z výsledků této části je, že množina M_R všech funkcí, ve kterých je Frechetova derivace prostá a na, je hustá a otevřená a doplňková množina M_C je slabě uzavřená. Poslední část je zaměřena na systém nestacionárních Navierových-Stokesových rovnic s okrajovými podmínkami Navierova typu na omezené hladké konvexní oblasti a na nestacionární Navierovu-Stokesovu úlohu s Navierovými okrajovými podmínkami na omezené oblasti s dostatečně hladkou hranicí. V textu je dokázána podmínka pro lokální existenci silných řešení daných systémů.cze
dc.description.abstractThe presented dissertation thesis deals with the most well-known mathematical models of flow of viscous incompressible fluid complemented by various types of boundary conditions. The introductory part describes the development of the studied problem and summarizes its current state. The thesis proceeds with the system of steady Boussinesq equations with mixed boundary conditions. The text defines Banach space X of „possible“ solutions of this problem and the Banach space Y of its data. The problem is formulated in the terms of operator equations by the means of operator N:X →Y. One of the results of this section is that the set M_R⊆X where the Frechet derivate of operator N is one-to-one and onto, is dense and open and the complementary set M_C is weakly closed. In the last part of the thesis, we focus on the system of non-steady Navier-Stokes equations with boundary conditions of Navier´s type on a bounded smooth convex domain and on the system of non-steady Navier-Stokes equations with Navier´s boundary conditions on a bounded domain with a sufficiently smooth boundary. As an original contribution, we prove a condition for the local in time existence of strong solutions of the given systems.eng
dc.language.isoCZE
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html.eng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html.cze
dc.subjectNavierovy-Stokesovy rovnice,Boussinesqovy rovnice,smíšené okrajové podmínky,okrajové podmínky Navierova typu,Navierovy okrajové podmínky,kvalitativní vlastnosti,silné řešenícze
dc.subjectNavier-Stokes equations,Boussinesq equations,mixed boundary conditions,Navier´s type boundary conditions,Navier´s boundary conditions,regularity,strong solutionseng
dc.titleMatematické modely proudění nestlačitelné tekutiny s různými typy okrajových podmínekcze
dc.titleMathematical Models of Flow of Incompressible Fluid with Various Types of Bundary Conditionseng
dc.typeDOKTORSKÁ PRÁCEcze
dc.typeDISSERTATIONeng
dc.date.accepted2018-12-05
dc.contributor.refereeBurda Pavel
theses.degree.disciplineMatematika ve stavebním inženýrstvícze
theses.degree.grantorkatedra matematikycze
theses.degree.programmeStavební inženýrstvícze


Files in this item





This item appears in the following Collection(s)

Show simple item record