ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta stavební
  • Disertační práce - 11000
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta stavební
  • Disertační práce - 11000
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-scale modeling of composite materials

Multi-scale modeling of composite materials

Typ dokumentu
disertační práce
doctoral thesis
Autor
Vorel Jan
Vedoucí práce
Šejnoha Michal
Oponent práce
Procházka Petr
Studijní obor
Fyzikální a materiálové inženýrství
Studijní program
Stavební inženýrství
Instituce přidělující hodnost
katedra mechaniky
Obhájeno
2009-12-08



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
The objective of this thesis is the determination of effective thermomechanical properties of carbon-carbon (C/C) plain weave fabric composites, particularly the effective thermal coefficients and the effective stiffness matrices. The selection of mechanical and heat conduction problems is promoted not only by available experimental measurements but also by their formal similarity. The C/C plain weave composites belong to an important class of high-temperature material systems. An exceptional thermal stability together with high resistance to thermal shocks or fracture following rapid and strong changes in temperature have made these materials almost indispensable in a variety of engineering spheres. While their appealing properties such as high strength, low coefficients of thermal expansion and high thermal conductivities are known, their prediction from the properties supplied by the manufacturer for individual constituents is far from being trivial since these systems are generally highly complicated. Apart from the characteristic three-dimensional structure of textile composites the geometrical complexity is further enhanced by the presence of various imperfections in the woven path developed during the manufacturing process. A number of models properly accounting for the three-dimensional effects have been developed in the past. However, a major shortcoming of many of these models is the omission of the porous phase, which in real systems may exceed 30% of the overall volume.
 
The objective of this thesis is the determination of effective thermomechanical properties of carbon-carbon (C/C) plain weave fabric composites, particularly the effective thermal coefficients and the effective stiffness matrices. The selection of mechanical and heat conduction problems is promoted not only by available experimental measurements but also by their formal similarity. The C/C plain weave composites belong to an important class of high-temperature material systems. An exceptional thermal stability together with high resistance to thermal shocks or fracture following rapid and strong changes in temperature have made these materials almost indispensable in a variety of engineering spheres. While their appealing properties such as high strength, low coefficients of thermal expansion and high thermal conductivities are known, their prediction from the properties supplied by the manufacturer for individual constituents is far from being trivial since these systems are generally highly complicated. Apart from the characteristic three-dimensional structure of textile composites the geometrical complexity is further enhanced by the presence of various imperfections in the woven path developed during the manufacturing process. A number of models properly accounting for the three-dimensional effects have been developed in the past. However, a major shortcoming of many of these models is the omission of the porous phase, which in real systems may exceed 30% of the overall volume.
 
URI
http://hdl.handle.net/10467/79055
Zobrazit/otevřít
PLNY_TEXT (8.609Mb)
POSUDEK (361.3Kb)
POSUDEK (791.7Kb)
POSUDEK (984.7Kb)
Kolekce
  • Disertační práce - 11000 [530]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV