Show simple item record

Recommendation Models Based on Images



dc.contributor.advisorŘehořek Tomáš
dc.contributor.authorPavlíček Martin
dc.date.accessioned2018-06-19T21:57:27Z
dc.date.available2018-06-19T21:57:27Z
dc.date.issued2018-06-15
dc.identifierKOS-695599708905
dc.identifier.urihttp://hdl.handle.net/10467/76819
dc.description.abstractCílem této práce je navrhnout, implementovat a porovnat několik content-based doporučovacích modelů, založených na různých metodách predikce obsahové podobnosti doporučovaných položek z jejich obrázků, se zaměřením na doporučování na webu a v prostředí online e-shopu. Tyto modely jsou navrženy jako alternativa k hojně využívaným modelům kolaborativního filtrování, které trpí řadou problémů jako je například cold-start problem. Pro predikci obsahové podobnosti obrázků jsou mimo jiné použity moderní přístupy založené na algoritmu ORB nebo učení umělých neuronových sítí. Úspěšnosti implementovaných modelů jsou následně offline testovány na reálných datasetech zaznamenaných uživatelských interakcí několika významných online e-shopů pomocí technik recall a catalog coverage. Model založený na umělé neuronové síti prokázal v offline testování nejlepší úspěšnost z navrhovaných modelů a byl nasazen do online A/B testu proti produkčnímu algoritmu, založeném na kolaborativním filtrování. Na testovaném vzorku 7435 uživatelů prokázal nově navržený model srovnatelnou proklikovost jako produkční algoritmus.cze
dc.description.abstractThe aim of this thesis is to design, implement and compare set of new content-based recommender models, using image processing methods for item similarity extraction with focus on web and e-commerce recommendations. Proposed models are meant as an alternative for a widely used collaborative filtering-based recommender systems, which have set of problems, including cold-start problem. In this thesis, for image similarity extraction there will be used modern methods like ORB algorithm or artificial neural network. Proposed models will be offline tested in the latter part of this thesis on the recall and catalog coverage metrics on a real world e-shop datasets. Artificial neural network-based recommender model had the best results in offline tests out of all proposed models and took place in online A/B test against production collaborative filtering-based recommender model. Total number of 7435 users attended this test and proposed model based on artificial neural network showed comparable click through rate as the production collaborative filtering-based model.eng
dc.language.isoCZE
dc.publisherČeské vysoké učení technické v Praze. Vypočetní a informační centrum.cze
dc.publisherCzech Technical University in Prague. Computing and Information Centre.eng
dc.rightsA university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmleng
dc.rightsVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.htmlcze
dc.subjectDoporučovací systémy,personalizované doporučování,content-based doporučovací systém,zpracování obrazu,umělá neuronová síť,ORB,strojové učenícze
dc.subjectRecommender systems,personalized recommendation,contentbased recommendation system,image processing,artificial neural network,ORB,machine learningeng
dc.titleDoporučovací modely založené na obrázcíchcze
dc.titleRecommendation Models Based on Imageseng
dc.typebakalářská prácecze
dc.typebachelor thesiseng
dc.date.accepted
dc.contributor.refereeKordík Pavel
theses.degree.disciplineZnalostní inženýrstvícze
theses.degree.grantorkatedra aplikované matematikycze
theses.degree.programmeInformatikacze


Files in this item




This item appears in the following Collection(s)

Show simple item record