ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra počítačů
  • Diplomové práce - 13136
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta elektrotechnická
  • katedra počítačů
  • Diplomové práce - 13136
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Meta-optimalizace solveru systému generálního a hlavního klíče

Meta-optimization of a master key system solver

Typ dokumentu
diplomová práce
master thesis
Autor
Jumurov Ruslan
Vedoucí práce
Černoch Radomír
Oponent práce
Šedivý Jan
Studijní obor
Umělá inteligence
Studijní program
Otevřená informatika
Instituce přidělující hodnost
katedra počítačů



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/cs/20160901-metodicky-pokyn-c-12009-o-dodrzovani-etickych-principu-pri-priprave-vysokoskolskych.pdf
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://www.cvut.cz/sites/default/files/content/d1dc93cd-5894-4521-b799-c7e715d3c59e/cs/20160901-metodicky-pokyn-c-12009-o-dodrzovani-etickych-principu-pri-priprave-vysokoskolskych.pdf
Metadata
Zobrazit celý záznam
Abstrakt
Many practical problems are NP-Hard (or NP-Complete), for which best algorithms may guarantee only exponential worth-case time complexity, if P != NP. Typically, these algorithms can not do better, but several types of heuristics can be invented into algorithms to improve their performance, without any guarantee for better worth-case complexity. Lock-chart solving is a NP-Hard problem. It is specified by a lock system - a set of keys and locks installed in one or several buildings, for each key customer decides which doors it should be able to open. Lock-Chart problem is formulated by these requirements. For lock-chart solving many different combinatorial optimization algorithms and techniques can be used. One of which is backtracking algorithm. This algorithm can use different pruning technique and heuristics. Heuristics are typically chosen randomly on each backtrack, with some participation of random shakes technique. This master thesis presents approach of meta-heuristic optimization for Lock-chart problem Solver based on Machine Learning techniques. Main efforts of this thesis are: patterns and dependencies between heuristics and lock-chart problems were discovered, Decision Tree based heuristic selection system was created and included into the current backtracking algorithm, performance improvement was measured by two experiments. Proposed Decision tree based heuristic selection approach outperformed the random heuristic selection approach in 92 problem instances out of 113.
 
Many practical problems are NP-Hard (or NP-Complete), for which best algorithms may guarantee only exponential worth-case time complexity, if P != NP. Typically, these algorithms can not do better, but several types of heuristics can be invented into algorithms to improve their performance, without any guarantee for better worth-case complexity. Lock-chart solving is a NP-Hard problem. It is specified by a lock system - a set of keys and locks installed in one or several buildings, for each key customer decides which doors it should be able to open. Lock-Chart problem is formulated by these requirements. For lock-chart solving many different combinatorial optimization algorithms and techniques can be used. One of which is backtracking algorithm. This algorithm can use different pruning technique and heuristics. Heuristics are typically chosen randomly on each backtrack, with some participation of random shakes technique. This master thesis presents approach of meta-heuristic optimization for Lock-chart problem Solver based on Machine Learning techniques. Main efforts of this thesis are: patterns and dependencies between heuristics and lock-chart problems were discovered, Decision Tree based heuristic selection system was created and included into the current backtracking algorithm, performance improvement was measured by two experiments. Proposed Decision tree based heuristic selection approach outperformed the random heuristic selection approach in 92 problem instances out of 113.
 
URI
http://hdl.handle.net/10467/61623
Zobrazit/otevřít
PRILOHA (7.705Mb)
PLNY_TEXT (1.557Mb)
POSUDEK (15.99Kb)
POSUDEK (81.87Kb)
Kolekce
  • Diplomové práce - 13136 [966]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV