ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta architektury
  • Disertační práce - 15000
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta architektury
  • Disertační práce - 15000
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-planar Printing of Construction Elements

Non-planar Printing of Construction Elements

Typ dokumentu
disertační práce
doctoral thesis
Autor
Jiří Vele
Vedoucí práce
Achten Henri Hubertus
Oponent práce
Roberto Naboni
Studijní program
Architektura a urbanismus
Instituce přidělující hodnost
ústav modelového projektování
Obhájeno
2025-06-03



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
This doctoral thesis investigates the application of non-planar slicing in construction 3D printing, addressing the limitations of conventional planar slicing techniques. Construction 3D printing relies on materials such as concrete, cementitious mixtures, geopolymers, and clay, which are extruded in large volumes within short timeframes. Unlike plastics and metals, these materials have longer setting times, posing challenges to buildability and printability. Planar slicing, which divides CAD models into uniform horizontal layers, is widely used but introduces significant drawbacks, including the stair-stepping effect, limited overhang printability, and anisotropic mechanical behaviour. Non-planar slicing, which incorporates Z-height variations, offers a promising alternative by enhancing surface quality, improving geometric accuracy, and optimizing structural performance. While non-planar slicing has been extensively explored in polymer-based additive manufacturing, its adoption in constructionscale 3D printing remains underdeveloped. This dissertation bridges the gap between the proven advantages of non-planar slicing in polymer-based manufacturing and its potential in construction 3D printing. Through comparative experiments and real-world case studies, the research evaluates non-planar slicing strategies for clay, cementitious materials, and geopolymer-based printing. Experimental testing validates its feasibility, demonstrating that non-planar slicing significantly enhances print quality and expands design possibilities. These findings provide a foundation for advancing construction 3D printing processes, enabling more innovative and efficient building practices.
 
This doctoral thesis investigates the application of non-planar slicing in construction 3D printing, addressing the limitations of conventional planar slicing techniques. Construction 3D printing relies on materials such as concrete, cementitious mixtures, geopolymers, and clay, which are extruded in large volumes within short timeframes. Unlike plastics and metals, these materials have longer setting times, posing challenges to buildability and printability. Planar slicing, which divides CAD models into uniform horizontal layers, is widely used but introduces significant drawbacks, including the stair-stepping effect, limited overhang printability, and anisotropic mechanical behaviour. Non-planar slicing, which incorporates Z-height variations, offers a promising alternative by enhancing surface quality, improving geometric accuracy, and optimizing structural performance. While non-planar slicing has been extensively explored in polymer-based additive manufacturing, its adoption in constructionscale 3D printing remains underdeveloped. This dissertation bridges the gap between the proven advantages of non-planar slicing in polymer-based manufacturing and its potential in construction 3D printing. Through comparative experiments and real-world case studies, the research evaluates non-planar slicing strategies for clay, cementitious materials, and geopolymer-based printing. Experimental testing validates its feasibility, demonstrating that non-planar slicing significantly enhances print quality and expands design possibilities. These findings provide a foundation for advancing construction 3D printing processes, enabling more innovative and efficient building practices.
 
URI
http://hdl.handle.net/10467/122486
Zobrazit/otevřít
POSUDEK (225.1Kb)
PLNY_TEXT (33.76Mb)
POSUDEK (444.1Kb)
POSUDEK (173.9Kb)
Kolekce
  • Disertační práce - 15000 [152]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV