ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Fakulta stavební
  • katedra hydrauliky a hydrologie
  • Diplomové práce - 11141
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Fakulta stavební
  • katedra hydrauliky a hydrologie
  • Diplomové práce - 11141
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical Modelling of Solid-Liquid Flow in Open Channel

Mathematical Modelling of Solid-Liquid Flow in Open Channel

Typ dokumentu
diplomová práce
master thesis
Autor
Joaquín Llanos Espinoza
Vedoucí práce
Matoušek Václav
Oponent práce
Nowak Petr
Studijní obor
Environmental Engineering and Science
Studijní program
Water and Environmental Engineering
Instituce přidělující hodnost
katedra hydrauliky a hydrologie
Obhájeno
2024-06-24



Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.html
Vysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznam
Abstrakt
This thesis investigates the complex multiphase flow of mixture of liquid and granular solids in open channels using advanced numerical modelling techniques within Ansys Fluent. By employing a Eulerian-Eulerian approach, the study provides a detailed exploration of flow behaviours across various conditions, focusing on unimodal and bimodal distributions of particle sizes. The simulation work evaluates the dynamics of solids transport under different flow scenarios, highlighting the effects of particle size variation and the interaction between solid particles and the carrying fluid. The simulations demonstrate a clear stratification process, especially in bimodal particle distributions. Coarser particles predominantly settle closer to the channel bed, whereas finer particles are more suspended within the flow. This stratification is more pronounced under certain flow conditions and adjusts with changes in particle size distribution, flow velocity, and channel slope. Increased discharge generally results in higher flow velocities and greater flow depths. This condition also affects stratification by promoting more vigorous mixing of particles and reducing the distinct layers of particle sizes. Higher discharges lead to increased turbulence within the flow, which can disrupt the settling of particles and lead to a more homogeneous mixture throughout the flow depth. The findings from this research contribute significantly to environmental engineering by offering enhanced predictive capabilities for particle transport in water bodies. Such insights are crucial for effective sediment management, erosion control, and the maintenance of hydraulic infrastructure. Furthermore, the validated models extend their utility to the optimization of channel design, supporting sustainable water resource management practices.
 
This thesis investigates the complex multiphase flow of mixture of liquid and granular solids in open channels using advanced numerical modelling techniques within Ansys Fluent. By employing a Eulerian-Eulerian approach, the study provides a detailed exploration of flow behaviours across various conditions, focusing on unimodal and bimodal distributions of particle sizes. The simulation work evaluates the dynamics of solids transport under different flow scenarios, highlighting the effects of particle size variation and the interaction between solid particles and the carrying fluid. The simulations demonstrate a clear stratification process, especially in bimodal particle distributions. Coarser particles predominantly settle closer to the channel bed, whereas finer particles are more suspended within the flow. This stratification is more pronounced under certain flow conditions and adjusts with changes in particle size distribution, flow velocity, and channel slope. Increased discharge generally results in higher flow velocities and greater flow depths. This condition also affects stratification by promoting more vigorous mixing of particles and reducing the distinct layers of particle sizes. Higher discharges lead to increased turbulence within the flow, which can disrupt the settling of particles and lead to a more homogeneous mixture throughout the flow depth. The findings from this research contribute significantly to environmental engineering by offering enhanced predictive capabilities for particle transport in water bodies. Such insights are crucial for effective sediment management, erosion control, and the maintenance of hydraulic infrastructure. Furthermore, the validated models extend their utility to the optimization of channel design, supporting sustainable water resource management practices.
 
URI
http://hdl.handle.net/10467/116244
Zobrazit/otevřít
PLNY_TEXT (5.562Mb)
POSUDEK (286.6Kb)
POSUDEK (209.5Kb)
Kolekce
  • Diplomové práce - 11141 [67]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV