Show simple item record



dc.contributor.authorKalal, Zdenek
dc.contributor.authorMatas, Jiří
dc.contributor.authorMikolajczyk, Krystian
dc.date.accessioned2012-06-12T12:45:36Z
dc.date.available2012-06-12T12:45:36Z
dc.date.issued2009-09
dc.identifier.citationZdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Online learning of robust object detectors during unstable tracking. In 3rd On-line learning for Computer Vision Workshop OLCV'09 (held in conjunction with ICCV 2009), pages 1417-1424, Piscataway, USA, October 2009. IEEE Computer Society, IEEE Computer Society.cze
dc.identifier.urihttp://hdl.handle.net/10467/9549
dc.description.abstractThis work investigates the problem of robust, longterm visual tracking of unknown objects in unconstrained environments. It therefore must cope with frame-cuts, fast camera movements and partial/total object occlusions/dissapearances. We propose a new approach, called Tracking-Modeling-Detection (TMD) that closely integrates adaptive tracking with online learning of the object-specific detector. Starting from a single click in the first frame, TMD tracks the selected object by an adaptive tracker. The trajectory is observed by two processes (growing and pruning event) that robustly model the appearance and build an object detector on the fly. Both events make errors, the stability of the system is achieved by their cancellation. The learnt detector enables re-initialization of the tracker whenever previously observed appearance reoccurs. We show the real-time learning and classification is achievable with random forests. The performance and the long-term stability of TMD is demonstrated and evaluated on a set of challenging video sequences with various objects such as cars, people and animals.eng
dc.language.isocescze
dc.publisherIEEEcze
dc.rights© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.eng
dc.titleOnline learning of robust object detectors during unstable trackingcze
dc.typepříspěvek z konference - elektronickýcze
dc.identifier.doi10.1109/ICCVW.2009.5457446


Files in this item



This item appears in the following Collection(s)

Show simple item record