Show simple item record



dc.contributor.authorLopatkin V.
dc.date.accessioned2019-03-27T22:35:49Z
dc.date.available2019-03-27T22:35:49Z
dc.date.issued2019
dc.identifierV3S-328721
dc.identifier.citationLOPATKIN, V. Derivations of Leavitt path algebras. Journal of Algebra. 2019, 520 59-89. ISSN 0021-8693. DOI 10.1016/j.jalgebra.2018.11.011.
dc.identifier.issn0021-8693 (print)
dc.identifier.issn1090-266X (online)
dc.identifier.urihttp://hdl.handle.net/10467/81768
dc.description.abstractIn this paper, we describe the K-module HH1(LK(Γ)) of outer derivations of the Leavitt path algebra LK(Γ) of a row-finite graph Γ with coefficients in an associative commutative ring K with unit. We explicitly describe a set of generators of HH1(LK(Γ)) and relations among them. We also describe a Lie algebra structure of outer derivation algebra of the Toeplitz algebra. We prove that every derivation of a Leavitt path algebra can be extended to a derivation of the corresponding C∗-algebra.eng
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAcademic Press
dc.relation.ispartofJournal of Algebra
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0021869318306458
dc.subjectGröbner–Shirshov basiseng
dc.subjectLeavitt path algebraeng
dc.subjectDerivationseng
dc.subjectHochschild cohomologyeng
dc.subjectWitt algebraeng
dc.subjectToeplitz algebraeng
dc.subjectC*-algebraeng
dc.titleDerivations of Leavitt path algebraseng
dc.typečlánek v časopisecze
dc.typearticleeng
dc.identifier.doi10.1016/j.jalgebra.2018.11.011
dc.rights.accessclosedAccess
dc.identifier.wos000454464900003
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85057219097


Files in this item


This item appears in the following Collection(s)

Show simple item record