Návrh a ověření viskoelastického fyzického modelu respirační soustavy
Design and validation of a viscoelastic physical model of the respiratory system
Typ dokumentu
bakalářská prácebachelor thesis
Autor
Shani Hochman
Vedoucí práce
Walzel Šimon
Oponent práce
Kofránek Jiří
Studijní program
Biomedical TechnologyInstituce přidělující hodnost
katedra biomedicínské technikyObhájeno
2025-06-20Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznamAbstrakt
Design and validation of a viscoelastic physical model of the respiratory sys-tem Acute Respiratory Distress Syndrome (ARDS) is a prevalent and critical pulmonary condition. Although ARDS-related mortality has declined in recent years, these improve-ments are largely attributed to advances in mechanical ventilation strategies. Continued research in this field remains essential to further optimize patient outcomes. A key as-pect of such research involves the use of accurate and comprehensive lung models and simulators. Given the complex mechanical behavior of the lungsdriven by compliance and resistancethese factors must be carefully considered in simulations. However, vis-coelastic effects and tissue resistance are often overlooked, despite their significant impact on ventilation dynamics. To address this gap, this study aimed to design a physical lung model incorporating viscoelastic properties to investigate their influence during mechan-ical ventilation. The model combined 3D-printed components with off-the-shelf available parts, and was evaluated using a ventilator in Controlled Mandatory Ventilation mode, applying constant parameters while varying tidal volume and tissue resistance. The measurements demonstrated that increased tissue resistance led to decreased dynamic compliance and a subtle delay in the return toward the Positive End Expiratory Pressure (PEEP), indicating viscoelastic response. While the proposed model did not fully repli-cate the anticipated differences in viscoelastic effects, it consistently revealed viscoelastic behavior patterns. Design and validation of a viscoelastic physical model of the respiratory system Acute Respiratory Distress Syndrome (ARDS) is a prevalent and critical pulmonary condition. Although ARDS-related mortality has declined in recent years, these improvements are largely attributed to advances in mechanical ventilation strategies. Continued research in this field remains essential to further optimize patient outcomes. A key aspect of such research involves the use of accurate and comprehensive lung models and simulators. Given the complex mechanical behavior of the lungsdriven by compliance and resistancethese factors must be carefully considered in simulations. However, viscoelastic effects and tissue resistance are often overlooked, despite their significant impact on ventilation dynamics. To address this gap, this study aimed to design a physical lung model incorporating viscoelastic properties to investigate their influence during mechanical ventilation. The model combined 3D-printed components with off-the-shelf available parts, and was evaluated using a ventilator in Controlled Mandatory Ventilation mode, applying constant parameters while varying tidal volume and tissue resistance. The measurements demonstrated that increased tissue resistance led to decreased dynamic compliance and a subtle delay in the return toward the Positive End Expiratory Pressure (PEEP), indicating viscoelastic response. While the proposed model did not fully replicate the anticipated differences in viscoelastic effects, it consistently revealed viscoelastic behavior patterns.
Kolekce
- Bakalářské práce - 17110 [948]