Face-TLD: Tracking-Learning-Detection applied to faces
Typ dokumentu
příspěvek z konference - elektronickýAutor
Kalal, Zdenek
Mikolajczyk, Krystian
Matas, Jiří
Práva
© 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Metadata
Zobrazit celý záznamAbstrakt
A novel system for long-term tracking of a human face in unconstrained videos is built on Tracking-Learning-Detection (TLD) approach. The system extends TLD with the concept of a generic detector and a validator which is designed for real-time face tracking resistent to occlusions and appearance changes. The off-line trained detector localizes frontal faces and the online trained validator decides which faces correspond to the tracked subject. Several strategies for building the validator during tracking are quantitatively evaluated. The system is validated on a sitcom episode (23 min.) and a surveillance (8 min.) video. In both cases the system detects-tracks the face and automatically learns a multi-view model from a single frontal example and an unlabeled video.
Kolekce
K tomuto záznamu jsou přiřazeny následující licenční soubory: