Show simple item record



dc.contributor.authorChum, Ondřej
dc.contributor.authorPerd’och, Michal
dc.contributor.authorMatas, Jiří
dc.date.accessioned2012-06-12T11:49:05Z
dc.date.available2012-06-12T11:49:05Z
dc.date.issued2009-06
dc.identifier.citationOndrej Chum, Michal Perdoch, and Jirí Matas. Geometric min-hashing: Finding a (thick) needle in a haystack. In CVPR 2009: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 17-24, Madison, USA, June 2009. Omnipress.cze
dc.identifier.urihttp://hdl.handle.net/10467/9547
dc.description.abstractWe propose a novel hashing scheme for image retrieval, clustering and automatic object discovery. Unlike commonly used bag-of-words approaches, the spatial extent of image features is exploited in our method. The geometric information is used both to construct repeatable hash keys and to increase the discriminability of the description. Each hash key combines visual appearance (visual words) with semi-local geometric information. Compared with the state-of-the-art min-hash, the proposed method has both higher recall (probability of collision for hashes on the same object) and lower false positive rates (random collisions). The advantages of geometric min-hashing approach are most pronounced in the presence of viewpoint and scale change, significant occlusion or small physical overlap of the viewing fields. We demonstrate the power of the proposed method on small object discovery in a large unordered collection of images and on a large scale image clustering problem.eng
dc.language.isocescze
dc.publisherIEEEcze
dc.rights© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.eng
dc.titleGeometric min-Hashing: Finding a (Thick) Needle in a Haystackcze
dc.typepříspěvek z konference - elektronickýcze
dc.identifier.doi10.1109/CVPR.2009.5206531


Files in this item



This item appears in the following Collection(s)

Show simple item record