Zobrazit minimální záznam



dc.contributor.authorTamil Alagan N.
dc.contributor.authorHoier P.
dc.contributor.authorZeman P.
dc.contributor.authorKlement U.
dc.contributor.authorBeno T.
dc.contributor.authorWretland A.
dc.date.accessioned2020-05-13T08:41:39Z
dc.date.available2020-05-13T08:41:39Z
dc.date.issued2019
dc.identifierV3S-338775
dc.identifier.citationTAMIL ALAGAN, N., et al. Effects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718. Wear. 2019, 434 ISSN 0043-1648. DOI 10.1016/j.wear.2019.05.037.
dc.identifier.issn0043-1648 (print)
dc.identifier.issn1873-2577 (online)
dc.identifier.urihttp://hdl.handle.net/10467/87360
dc.description.abstractThe exceptional properties of Heat Resistant Super Alloys (HRSA) justify the search for advanced technologies that can improve the capability of machining these materials. One such advanced technology is the application of a coolant at high pressure while machining. The aim is to achieve extended tool life, better chip control and improved surface finish. Another aim is to control the temperature in the workpiece/tool interface targeting for optimum cutting conditions. In most of the existing applications with high-pressure coolant media, the nozzles are positioned on the rake face side of the insert and they are directed towards the cutting edge (the high-temperature area). The coolant is applied at high-pressure to improve the penetration of the cooling media along the cutting edge in the interface between the insert and workpiece material (chip) as well as to increase chip breakability. However, the corresponding infusion of coolant media in the interface between the flank face of the insert and the work material has been previously only scarcely addressed, as is the combined effect of coolant applications on rake and clearance sides of the insert. The present work addresses the influence of different pressure conditions in (flank: 0, 4 and 8 MPa; rake: 8 and 16 MPa) on maximum flank wear, flank wear area, tool wear mechanism, and overall process performance. Round uncoated inserts are used in a set of face turning experiments, conducted on the widely used HRSA “Alloy 718” and run in two condition tests with respect to cutting speed (45 and 90 m/min). The results show that an increase in rake pressure from 8 to 16 MPa has certainly a positive impact on tool life. Furthermore, at higher vc of 90 m/min, cutting edge deterioration: due to an extensive abrasion and crack in the wear zone were the dominant wear mechanism. Nevertheless, the increase in coolant pressure condition to 16 MPa reduced the amount of abrasion on the tool compared to 8 MPa.eng
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Science
dc.relation.ispartofWear
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0043164819306386
dc.subjectAlloy 718eng
dc.subjectCemented tungsten carbideeng
dc.subjectHigh-pressure coolanteng
dc.subjectTool wear mechanismeng
dc.subjectCrackeng
dc.subjectCoolant-boilingeng
dc.titleEffects of high-pressure cooling in the flank and rake faces of WC tool on the tool wear mechanism and process conditions in turning of alloy 718eng
dc.typečlánek v časopisecze
dc.typejournal articleeng
dc.identifier.doi10.1016/j.wear.2019.05.037
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/OPVVV/CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000826/CZ/Center of Advanced Aerocraft Technology/CAAT
dc.rights.accessopenAccess
dc.identifier.wos000487194500001
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion
dc.identifier.scopus2-s2.0-85070612386


Soubory tohoto záznamu


Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam