Zobrazit minimální záznam



dc.contributor.authorHeinz V.
dc.contributor.authorVilím P.
dc.contributor.authorHanzálek Z.
dc.date.accessioned2025-10-14T08:54:54Z
dc.date.available2025-10-14T08:54:54Z
dc.date.issued2025
dc.identifierV3S-384962
dc.identifier.citationHEINZ, V., P. VILÍM, and Z. HANZÁLEK. Reinforcement learning for search tree size minimization in Constraint Programming: New results on scheduling benchmarks. Computers & Industrial Engineering. 2025, 209 ISSN 0360-8352. DOI 10.1016/j.cie.2025.111413.
dc.identifier.issn0360-8352 (print)
dc.identifier.issn1879-0550 (online)
dc.identifier.urihttp://hdl.handle.net/10467/127231
dc.description.abstractFailure-Directed Search (FDS) is a significant complete generic search algorithm used in Constraint Programming (CP) to efficiently explore the search space, proven particularly effective on scheduling problems. This paper analyzes FDS’s properties, showing that minimizing the size of its search tree guided by ranked branching decisions is closely related to the Multi-armed bandit (MAB) problem. Building on this insight, MAB reinforcement learning algorithms are applied to FDS, extended with problem-specific refinements and parameter tuning, and evaluated on the two most fundamental scheduling problems, the Job Shop Scheduling Problem (JSSP) and Resource-Constrained Project Scheduling Problem (RCPSP). The resulting enhanced FDS, using the best extended MAB algorithm and configuration, performs 1.7 times faster on the JSSP and 2.5 times faster on the RCPSP benchmarks compared to the original implementation in a new solver called OptalCP, while also being 3.5 times faster on the JSSP and 2.1 times faster on the RCPSP benchmarks than the current state-of-the-art FDS algorithm in IBM CP Optimizer 22.1. Furthermore, using only a 900 s time limit per instance, the enhanced FDS improved the existing state-of-the-art lower bounds of 78 of 84 JSSP and 226 of 393 RCPSP standard open benchmark instances while also completely closing a few of them.eng
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofComputers & Industrial Engineering
dc.rightsCreative Commons Attribution (CC BY) 4.0
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectConstraint ProgrammingReinforcement learningDiscrete optimizationSchedulingTree searchHeuristicseng
dc.titleReinforcement learning for search tree size minimization in Constraint Programming: New results on scheduling benchmarkseng
dc.typečlánek v časopisecze
dc.typejournal articleeng
dc.identifier.doi10.1016/j.cie.2025.111413
dc.relation.projectidinfo:eu-repo/grantAgreement/Czech Science Foundation/GA/GA22-31670S/CZ/Scheduling Tests in Medical Laboratories: Reduction of Turn-Around Time/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/OPJAK/CZ.02.01.01%2F00%2F22_008%2F0004590/CZ/Robotics and advanced industrial production/ROBOPROX
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionacceptedVersion
dc.identifier.scopus2-s2.0-105014103087


Soubory tohoto záznamu


Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

Creative Commons Attribution (CC BY) 4.0
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je Creative Commons Attribution (CC BY) 4.0