ČVUT DSpace
  • Prohledat DSpace
  • English
  • Přihlásit se
  • English
  • English
Zobrazit záznam 
  •   ČVUT DSpace
  • České vysoké učení technické v Praze
  • Publikační činnost ČVUT
  • Zobrazit záznam
  • České vysoké učení technické v Praze
  • Publikační činnost ČVUT
  • Zobrazit záznam
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cepstral Coefficients Effectiveness for Gunshot Classifying

Typ dokumentu
článek v časopise
journal article
Peer-reviewed
acceptedVersion
Autor
Svatoš J.
Holub J.



Práva
openAccess
Metadata
Zobrazit celý záznam
Abstrakt
This paper analyses the efficiency of various frequency cepstral coefficients (fCC) in a non-speech application, specifically in classifying acoustic impulse events - gunshots. There are various methods for such event identification available. The majority of these methods are based on time or frequency domain algorithms. However, both of these domains have their limitations and disadvantages. In this article, an fCC, combining the advantages of both frequency and time domains, is presented and analyzed. These originally speech features showed potential not only in speech-related applications but also in other acoustic applications. The comparison of the classification efficiency based on features obtained using four different fCC, namely Mel-frequency Cepstral Coefficients (MFCC), Inverse Mel-frequency Cepstral Coefficients (IMFCC), Linear-frequency Cepstral Coefficients (LFCC), and Gammatone-frequency Cepstral Coefficients (GTCC) is presented. An optimal frame length for an fCC calculation is also explored. Various gunshots from short guns and rifle guns of different calibers and multiple acoustic impulse events, similar to the gunshots, to represent false alarms are used. More than six hundred acoustic events records have been acquired and used for training and validation of two designed classifiers, Support Vector Machine, and Neural Network. Accuracy, Recall and Matthew's correlation coefficient measure the classification success rate. The results reveal the superiority of GFCC to other analyzed methods.
URI
http://hdl.handle.net/10467/121991
Zobrazit/otevřít
ACCEPTED ## OPEN (1.393Mb)
Kolekce
  • Publikační činnost ČVUT [1504]

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV
 

 

Užitečné odkazy

ČVUT v PrazeÚstřední knihovna ČVUTO digitální knihovně ČVUTInformační zdrojePodpora studiaPodpora publikování

Procházet

Vše v DSpaceKomunity a kolekceDle data publikováníAutořiNázvyKlíčová slovaTato kolekceDle data publikováníAutořiNázvyKlíčová slova

Můj účet

Přihlásit se

České vysoké učení technické v Praze copyright © 2016 

DSpace software copyright © 2002-2016  Duraspace

Kontaktujte nás | Vyjádření názoru
Theme by 
@mire NV