Spectrally optimal shapes for Laplace and Dirac materials
Spectrally optimal shapes for Laplace and Dirac materials
Typ dokumentu
disertační prácedoctoral thesis
Autor
Thi Bich Tuyen Vu
Vedoucí práce
Krejčiřík David
Oponent práce
Siegl Petr
Studijní program
Kvantové technologieInstituce přidělující hodnost
katedra matematikyObhájeno
2024-09-26Práva
A university thesis is a work protected by the Copyright Act. Extracts, copies and transcripts of the thesis are allowed for personal use only and at one?s own expense. The use of thesis should be in compliance with the Copyright Act http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf and the citation ethics http://knihovny.cvut.cz/vychova/vskp.htmlVysokoškolská závěrečná práce je dílo chráněné autorským zákonem. Je možné pořizovat z něj na své náklady a pro svoji osobní potřebu výpisy, opisy a rozmnoženiny. Jeho využití musí být v souladu s autorským zákonem http://www.mkcr.cz/assets/autorske-pravo/01-3982006.pdf a citační etikou http://knihovny.cvut.cz/vychova/vskp.html
Metadata
Zobrazit celý záznamAbstrakt
Spectrally optimal shapes for Laplace and Dirac materials is an interaction between geometry and the spectrum of partial differential operators arising in quantum as well as classical physics. It is the determination of optimal shapes for eigenvalues of Laplace and Dirac operators, subject to various boundary conditions and geometric constraints. It illustrates the spectral isoperimetric inequalities of the Laplacian and Dirac operators which describe classical materials and graphene. Spectrally optimal shapes for Laplace and Dirac materials is an interaction between geometry and the spectrum of partial differential operators arising in quantum as well as classical physics. It is the determination of optimal shapes for eigenvalues of Laplace and Dirac operators, subject to various boundary conditions and geometric constraints. It illustrates the spectral isoperimetric inequalities of the Laplacian and Dirac operators which describe classical materials and graphene.
Kolekce
- Disertační práce - 14000 [288]