Show simple item record

dc.contributor.authorHáková , Lenka
dc.contributor.authorHrivnák , Jiří
dc.contributor.authorMotlochová , Lenka
dc.date.accessioned2017-02-09T11:33:57Z
dc.date.available2017-02-09T11:33:57Z
dc.date.issued2016
dc.identifier.citationActa Polytechnica. 2016, vol. 56, no. 3, p. 202-213.
dc.identifier.issn1210-2709 (print)
dc.identifier.issn1805-2363 (online)
dc.identifier.urihttp://hdl.handle.net/10467/67260
dc.description.abstractThe aim of this article is to describe several cubature formulas related to the Weyl group orbit functions, i.e. to the special cases of the Jacobi polynomials associated to root systems. The diagram containing the relations among the special functions associated to the Weyl group orbit functions is presented and the link between the Weyl group orbit functions and the Jacobi polynomials is explicitly derived in full generality. The four cubature rules corresponding to these polynomials are summarized for all simple Lie algebras and their properties simultaneously tested on model functions. The Clenshaw-Curtis method is used to obtain additional formulas connected with the simple Lie algebra C2.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherČeské vysoké učení technické v Prazecs
dc.publisherCzech Technical University in Pragueen
dc.relation.ispartofseriesActa Polytechnica
dc.relation.urihttps://ojs.cvut.cz/ojs/index.php/ap/article/view/3457
dc.rightsCreative Commons Attribution 4.0 International Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectWeyl group orbit functionsen
dc.subjectJacobi polynomialsen
dc.subjectcubature formulasen
dc.titleON CUBATURE RULES ASSOCIATED TO WEYL GROUP ORBIT FUNCTIONS
dc.typearticleen
dc.date.updated2017-02-09T11:33:57Z
dc.identifier.doihttps://doi.org/10.14311/AP.2016.56.0202
dc.rights.accessopenAccess
dc.type.statusPeer-reviewed
dc.type.versionpublishedVersion


Files in this item



This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International License